Gonnovitne
 $0 \cdot 0$

SPACE WAR

Home Finances

8K ON BOARD MEMORY!

5 K RAM. 3 K ROM or 4 K RAM, 4 K ROM (link selectable). Kit supplied with 3 K RAM, 3 K ROM. System expandable for up to 32 K memon

2 KEYBOARDS!

56 Key alphanumeric keyboard for entering high level language plus 16 key Hex pad for easy entry of machine code.

GRAPHICS!

64 character graphics option - includes transistor symbols! Only £18.20 extra)

MEMORY MAPPED

high resolution VDU circuitry using discrete THL Hor ex naive 32 linty, Has its own 2 K

KANSAS CITY
KANSAS CITY

2 MICROPROCESSORS

Z80 the powerful CPU with 158 instruction, including all 78 of the 8080 , controls the MM57109 number cruncher. Functions include,,+- . /. squares roots, logs 9 exponentiag trig functions, inverses etc Range 10^{-99} to 9×19^{99} to 8 figures plus 2 exponen digits

EFFICIENT OPERATION

Why waste valuable memory on sub routines for numeric processing? The number cruncher handles everything internally!

RESIDENT BASIC

with extended mathematical capability. Onily $2 K$ memory used but more powerful than most 8K Basics!

1K MONITOR
 resident in EPROM

SINGLE BOARD DESIGN
Even keyboards and power supply grcuitry on the superb quality double sided plated through-hole PCB

COMPLETE KIT NOW ONLY $\mathrm{f} 249+$ VAT

Kit also available as separate packs: e.g. PCB. Keyboards. Cabinet, etc.

POWERTRAN

PSI Comp 80.Z80 Based powerful scientific computer Design as published in Wireless World

The kit for this outstandingly practical design by John Adams published in a series of articles in Wireless World really is completel Included in the PSI COMP 80 scientific computer kit is a professionally finished cabinet, fibre-glass double sided, plated-through-hole printed circuit board. 2 keyboards PCB mounted for ease of construction. IC sockets, high reliability metal oxide resistor's. power supply using custom designed toroidal transformer 2 K Basic and 9 K monitor in EPROMS and of course wire nute holts, etc

PSI COMP 80 Memory Expansion System

Expansion up to 32 K all inside the computer's own cabinetI
By carefully thought out engineering a mother board with buffers and its own power supply (powered by the computers transformer) enables up to 38 K RAM or 8 K ROM boards to be fitted neatly inside the computer cabinet. Conmections to the , mother board from the main board expansion socket is made via a ribbon cable.
Mother Board Fibre glass double sided plated through hole P.C.B.
$£ 39.90$ $8.7^{\prime \prime} \times 3.0^{\prime \prime}$ set of all components including all brackets, fixing parts and ribbon cable with socket to connect to expansion plug

BK Static RAM Board	Fibre glass double sided plated through hole P.C.B. $5.6^{\prime \prime} \times 4.8^{\prime}$	£12.50
	Set of components including IC sockets, plug and socket but excluding RAMs.	¢11.20
	2114L. RAM (16 required)	£5.00
	Complete set of board, components, 16 RAMS	¢89.50
8 K ROM Board	Fibre glass double sided plated through hole P.C.B. $5.6^{\prime \prime} \times 4.8^{\prime \prime}$	£12.40
	Set of components including IC sockets, plug and socket but excluding ROMs	£10.70
	2708 ROM (8 required)	¢8.00

Floppy Disk, PROM proarammer and printer interface coming shortly!

Value Added Tax not included in prices

PRICE STABILITY: Order with confidence. Irrespective of any price changes we will honour all prices in this advertisement until May 30th, 1980. If this month's advertisement is mentioned with youl order. Errors and VAT rate changes excluded.
EXPORT ORDERS: No VAT. Postage charged at actual cost plus $£ 1$ handling and documentation.
U.K. ORDERS: Subsequent to 15% surcharge for VAT. NO charge is made for carriage. Or current rate if changed.
SECURICOR DELIVER: For this optional service (U.K. mainland only) add $£ 2.50$ (VAT inclusive) per kit.

PCB size $16.0^{\prime \prime} \times 125^{\prime \prime}$

UK Carriage FREE

POWERTRAN COMPUTERS
(a division of POWERTRAN ELECTRONICS)

PAGE
NEWS
Might micro offerings.
MPU's BY EXPERIMENT
Display the results of your knowledge.
$\begin{array}{ll}\text { ADAM REVIEW } \\ \text { Business is booming. } & 17\end{array}$
PROBLEM PAGE 22
One long answer, lots of short questions.
SPACE WAR 26
Zap the baddies with out triple program set.
COMPETITION38

Have a Happy Birthday on us.
ITT 202042

Does an English Apple taste as good?
SOFTSPOTS
Software forum.
HOME FINANCE
Can you have budgeted for this?
MODEM PROJECT
Let micro speak unto micro.
NASREAD
Upgrade your Nascom to high speed.
MICROLINK
Can your micro see in the dark?
SPECIAL OFFER
Get into print with our amazing sale machine.

Britain's first com

A complete personal computer for a third of the price of a bare board.

Also available ready assembled for $£ 9995$

The Sinclair ZX80.

Until now, building your own computer could easily cost around $£ 300$ - and still leave you with only a bare board for your trouble.
The Sinclair ZX80 changes all that. For just $£ 79.95$ you get everything you need to build a personal computer at home... PCB, with IC sockets for all ICs; case; leads for direct connection to your own cassette recorder and television; everything!
And yet the ZX80 really is a complete, powerful, full-facility computer, matching or surpassing other personal computers on the market at several times the price. The ZX80 is programmed in BASIC, and you could use it to do quite literally anything from playing chess to running a power station.

The ZX80 is pleasantly straightforward to assemble, using a fine-tipped soldering iron. Once assembled, it immediately proves what a good job you've done. Connect it to your TV set... link it to an appropriate power source *. and you're ready to go.

Your 2X80 kit contains...

- Printed circuit board, with IC sockets for all ICs.
- Complete components set, including all ICs - all manufactured by selected worldleading suppliers.
- New rugged Sinclair keyboard, touchsensitive, wipe-clean.
- Ready-moulded case.
- Leads and plugs for connection to any portable cassette recorder (to store programs) and domestic TV (to act as VDU)
- FREE course in BASIC programming and user manual.

Optional extras

- Mains adaptor of 600 mA at 9 V DC nominal unregulated (available separately - see coupon).
- Additional memory expansion board plugs in to take up to 3 K bytes extra RAM chips. (Chips also available see coupon.)

[^0]
Two unique and valuable components of the Sinclair $\mathbf{Z X} 80$.

The Sinclair ZX80 is not just another personal computer. Quite apart from its exceptionally low price, the ZX80 has two uniquely advanced components: the Sinclair BASIC interpreter; and the Sinclair teach-yourself BASIC manual.

The unique Sinclair BASIC interpreter...

 offers remarkable programming advantages:- Unique 'one-touch' key word entry: the ZX80 eliminates a great deal of tiresome typing. Key words (RUN, PRINT, LIST, etc.) have their own single-key entry.
- Unique syntax check. Only lines with correct syntax are accepted into programs. A cursor identifies errors immediately. This prevents entry of long and complicated programs with faults only discovered when you try to run them
- Excellent string-handling capability - takes up to 26 string variables of any length. All strings can undergo all relational tests (e.g. comparison). The 7X80 also has string inputto request a line of text when necessary. Strings do not need to be dimensioned.
- Up to 26 single dimension arrays.
- FOR/NEXT loops nested up 26.
- Variable names of any length.
- BASIC language also handles full Boolean arithmetic, conditional expressions, etc.
- Exceptionally powerful edit facilities, allows modification of existing program lines.
- Randomise function, useful for games and secret codes, as well as more serious applications
- Timer under prógram control.
- PEEK and POKE enable entry of machine code instructions, USR causes jump to a user's machine language sub-routine.
- High-resolution graphics with 22 standard graphic symbols
- All characters printable in reverse under program control.
- Lines of unlimited length.

....and the Sinclair teach-yourself

BASIC manual.

If the features of the Sinclair interpreter listed alongside mean little to you-don't worry They're all explained in the specially-written 96 -page book free with every kit! The book makes learning easy, exciting and enjoyable, and represents a complete course in BASIC pro-gramming-from first principles to complex programs. (Available separately-purchase price refunded if you buy a ZX80 later.)

The ZX80 owes its remarkable low price to its remarkable design: the whole system is packed onto fewer, newer, more powerful and advanced LSI chips. A single SUPER ROM, for instance, contains the BASIC interpreter, the character set, operating system, and monitor. And the ZX80's 1 K byte RAM is roughly equivalent to 4 K bytes in a conventional computer, because the ZX80's brilliant design packs the RAM so much more tightly. (Key words, for instance, occupy just a single byte.

To all that, add volume production - and you've that rare thing: a price breakthrough that really is a breakthrough.

The Sinclair ZX80. Kit: $£ 79.95$. Assembled: £99.95. Complete!

The ZX80 kit costs a mere $£ 79.95$. Can't wait to have a ZX80 up and running? No problem! It's also available, ready assembled, for only $£ 99.95$.

Whether you choose the kit or the readymade, you can be sure of world-famous Sinclair technology-and years of satisfying use. (Science of Cambridge Ltd is one of the Sinclair companies owned and run by Clive Sinclair.)

To order, complete the coupon, and post to Science of Cambridge for delivery within 28 days. Return as received within 14 days for full money refund if not completely satisfied.

Science of Cambridge Lud
6 Kings Parade, Cambridge, Cambs., CB2 ISN. Tel: 0223311488.

Order Form

To: Science of Cambridge Ltd, 6 Kings Parade, Cambridge, Cambs., CB2 1SN. Remember: all prices shown include VAT, postage and packing. No hidden extras.

Please send me:

Qeantity	Item	Item price	Total C
	Sinclair ZX80 Personal Computer kit(s). Price includes ZX80 BASIC manual, excludes mains adaptor.	79.95	
	Ready-assembled Sinclair ZX80 Personal Computer(s). Price includes ZX80 BASIC manual, excludes mains adaptor.	99.95	
	Mains Adaptor(s) (600 mA at 9 V DC nominal unregulated).	8.95	
	Memory Expansion Board(s) (takes up to 3K bytes).	12.00	16.00
	RAM Memory chips - standard IK bytes capacity.		

Address

SOFTWARE BONANZA

Bumper bundles are in again this month with a veritable pile of stuff from Petsoft. To start the New Year they are chopping large sums of money off some of their business packages, namely the Sales and Purchase Ledger programs. Prices are now $£ 95$ for cassette and $£ 115$ for disk based versions. It is hoped to offer a complete range of the business packs for less than £100 a program very soon. With the new marketing agreements for five European countries and Australia they are expecting to sell 100,000 before Easter, perhaps this means a platinum for some lucky person. One of Petsofts new offering is a Job Evaluation package, selling at $£ 25$. Designed for managers and personnel departments it uses a multiple regression analysis to produce a Job Evaluation Formula from a set of data produced by the employ-
ees. Another new package in the business range is the Sales invoicing program. The program is capable of being stand-alone and handles product descriptions, prices, VAT rates and terms of trade etc. Cost is $£ 350$ and this includes a training course. Finally in this month's Petsoft plug is a Timetabling program, designed to help teachers with multiple option courses sort things out. Designed by Oxford Systems it is said to decimate the time required to do things manually. we wondered if this meant that it worked in BCD? The program has been field tested and costs $£ 95$ and is designed for the 32 K PET. For details on all the above offerings contact Petsoft at 66-68 Hagley Road, Edgbaston, Birmingham B16 8PF

Stop Press:
Petsoft are today, 8th Feb, launching their new Word Pro-

FASTER THAN ROM

Texas Instruments have launched a new 8 K EPROM with an access time of 250 nanoseconds. Designated the TMS2508-25 it is compatible with other family

TAKE IT WITH YOU

Portable Microsystems are ex panding their range of portable machines with a system called TERA. This is a mobile data terminal which uses FM radio to report back to the main computer, Breaker One Four? The terminal has a full alphanumeric keypad and a 64 character display and a typical range of one mile. The companion network
members such as the 2516 and requires a single 5 V supply. The chip can be erased under conventional UV and is capable of being programmed sequentially, singly or in block modes. The chip should be available from all TI distributors.
controller runs through the landlines or is hard wired and uses RS232 protocol. TERA can support up to 250 terminals and there is a bar code wand option. Also new from PM is a digital logic trainer called ELT 100 suitable as a stand-alone educational tool or in the classroom. Contact Portable Microsystems at Forby House, 18 Market Place, Brackley, Northants.

cessor. Written in machine code and priced at $£ 325$ it is comparable in performance to purpose built systems and will be supplied with full documentation. For full details contact your local dealer or Petsoft at the above address.

AT LAST!

Do your copies of Computing Today get dog-eared and dejected? Does your better half throw them away each month? Solve all these common prob lems with one of our smart new binders. Available in glowing red with our logo on the spine in midnight black they will make a welcome sight on your bookshelf, and you will be sure of your copies' safety. At the bargain price of $£ 3.20$ all in they will not break the bank either!

Order yours direct from our offices but please keep the order separate from any other mail and mark the envelope "BINDERS"

CHUNKY STUFF

This months hardware news is on RAMs, ' n things that go round, so if you are all sitting comfortably Intel have released a new bunch of RAM in 1 K by 4 to complement the faithful 2114. It not only goes faster but uses less juice as well. Identification is by the suffix A. a typical example being 2114 AL -2. They are fully compatible with the earlier versions and access time is reduced by typically 50%, power is 40% down. Intel have also launched a cartridge based development system with a 7.3 Mb external cartridge disk and a 250 K floppy as well. The system is intended for 8086 and 8085 users who wish to develop large programs faster. The disk unit is available separately. System configuration is 64 K RAM, 4 K ROM, 2 K VDU, detachable ASCII keyboard and the disk unit. For more information contact Intel at 4 Between Towns Road, Cowley, Oxford OX4 3NB. Rapid Recall have a couple of new offerings this month, the first is a floppy controlier called iSBC 204. It is fully compatible with Intel single board machines and most soft sectored, single density standard and mini floppies. RR are also supplying an analogue in, analogue out machine designated the 2920. All major functions are under software control and development is under an Intellec system. The processor is a 25 bit high speed one with EPROM and scratchpad RAM. There are four inputs and eight outputs which are multiplexed, converted, processed and then sent back to the outside world. Typical applications include complex filters, threshold detectors and rectifiers. For details contact Rapid Recall at 6 Soho Mills, Wooburn Industrial Park, Wooburn Green, Bucks.

DYNAMIC STUFF

Data Dynamics, the Hayes peripheral people, are now offering their range of ZIP terminals with a numeric keypad option. The twelve key pad has the usual numerics and " + " "." keys and is designed for people with large amounts of data to input. The ZIP terminals are now available in a vast variety of configuration including three dual standard models as well as a choice of 80 column tractor or friction and 132 column tractor printers. All the ZIP printers can now be fitted with a two colour print option. The modification is made by fitting a new ribbon transport that handles the SO and SI codes to select either black or red printing. For more info on all the ZIP range contact Data Dynamics at Data House, Springfield Road, Hayes, Middx.

CLUB CALL

Well, we didn't seem to make too many mistakes in our Club Survey of the other month. However we have had one or two late items so here they are. The East London Amateur Computer Club has got itself a new Chairman, Dr Graham Crisp who is contactable at 45 Leadale Avenue, Chingford, London E4 8AX or on 01-529 6010. The Thames Valley Amateur Computer Club are to meet in the Southcote Pub, in Southcote Lane, off the Bath Road
in Reading from March. This means that the meetings will now be held on Tuesdays instead of Thursdays so the first one is on March 4th. Tiem of the meet is 7.00 for 7.30 and mines a pint of Best. And, finally, we have news of a newly forming club for all you people with TI58/59 programmable calculators. Called the Independent Texas Instruments TI 58/59 Users Group it is being co-ordinated by Paul Rees at Flat 2, No 1 Palatine Road, Withington, Manchester 20 and there is a program library and a newsletter.

KEY TO EXPAND

Keen Computers, the Nottingham based Apple specialists, are to expand in the new year with a London store. Opening somewhere in South London in January it will become a sales
and service base for the South East but the main Nottingham center will still be used for special skills such as programm ing. For more details contact Dr Tim Keen at 5 The Poultry, Market Square, Nottingham or ring on 0602-583254.

CLOCK THIS ONE

Ingersoll, the watch people who moved into TV games not so long ago, have been appointed the sole distributors of the new Atari Video Computer System. Designated the 400/800 series they are being described as "the world's most advanced home computers". The press sheet goes on to say that they are designed and built to a high degree of reliability and engineered to accept "ROM, RAM, cassette tape, floppy disk and bubble memories". The units are designed to plug into your colour TV, and hopefully that means PAL encoded, and they feature all the usual goodies
such as full colour, four sound voices, music synthesis, light pen, modem and utilise high speed printers". The 800 mode is shipped with 8 K RAM expands to $48 \mathrm{~K}, 8 \mathrm{~K}$ ROM expands to 40 K , and is based on the 6502. It can also handle up to four floppies and has an ASCII keyboard. . The language is Atari BASIC, presumably a Microsoft type. Prices of these machines will range from below $£ 400$ to under $£ 750$, it is expected that demand will exceed supply in the US until the end of 81 . We have asked to see one so perhaps we shal be able to tell you more soon but, for the meantime, contact Ingersoll at 202 New North Road, London N1 7BL.

EXPLORER/85

 FEATURES INTEL 8085 cpu

 FEATURES INTEL 8085 cpu WITH ON BOARD S-100 EXPANSION

 WITH ON BOARD S-100 EXPANSION}

NEW UNBEATABLE 1980 PRICES NOW!

FLEXIBILITY: Real flexibility at LAST. The EXPLORER/85 features the Intel $8085 \mathrm{cpu} 100 \%$ compatible with all 8080 A and 8085 software. Runs at 3Mhz. Mother Board (Level A) with 2, S100 pads expandable to 6 (Level C).
MEMORY: 2 K Monitor ROM - 4 K WORKSPACE/USER RAM - 1 K Video RAM - 8 K Microsoft BASIC in ROM or Cassette. INTERFACES: STANDALONE FULL ASC11 Kevboard Terminal, 32/64 characters per 16 lines. Cassette interface (with motor control and cassette-File Structure). RS-232/20Ma loop. 4, 8 bit: 1, 6 bit 1/O ports, programmable 14 bit binary counter/timer. Direct interface for any S-100 Board. FULL Buffering Decoding for $\mathrm{S}-100 \mathrm{n}$ Bus pads. Wait state generator for slow memory. Each stage has separate 5 v 1 A regulator for improved isolation and freedom from cross talk. P.S.U. requirements:- $8 \mathrm{v}, 6.3 \mathrm{v}$ AC. Runs with North Star controller and Floppies/CPM. EXPLORER/85 is expandable to meet your own requirements with easy to obtain S-100 peripherals. EXPLORER/85 can be purchased in individual levels, kit form or wired and tested. OR as a package deal as above.

Microsoft BASIC on Cassette
£295 + VAT
Microsoft BASIC in ROM

AVAILABLE NOW!

We are killing inflation with

The tried and tested Microcomputer System that expands to meet your needs COMPUTER KIT STARTS AT £59.95
ELF II

Board with video output

FEATURING THE RCA COSMAC 1802 cpu

STOP reading about computers and get your "hands on" an ELF II and Tom Pitman's short course. ELF II demonstrates all the 91 commands which an RCA 1802 can execute and the short course speedily instructs you how to use them. ELF II's VIDEO OUTPUT makes it unique among computers selling at such a modest price. The expanded ELF $\|$ is perfect for engineers, business, industry, scientific and educational purposes.

ELF II EXPANSION KITS - Ex VAT

Power supp 6.3v AC for ELF II ELFIISteel Cab
Giant Bd
4K RAM Bd
Expansion power supply
ASC IIKeyBd
ASC II Cab
Kluge Bd
86 Pin Con
LIGHT PEN
Video Graphics Bd
ELFII Tiny Basic cassette ELF-Bug
Short course on progrm Short course on Tiny basic :RCA 1802 manual
Tex Editor Assembler, etc.

f5. 00

£19.75
$£ 25.50$
£57.50
£19.00
£ 39.95
£12.75
£ 11.00
$£ 3.75$
£6.00
£61.50
$£ 9.75$
£9.75
£3.00
$£ 3.00$
£3.00
£12.75

ELF II BOARD

SPECIFICATION
*RCA 18028 -bit micro processor with 256 byte RAM expandable to 64 K bytes.
-RCA 1861 video IC to display program on TV screen via the RF Modu lator Single Board with Professional hex key-board-fully decoded to eliminate the waste of memory for keyboard decoding circuits. Load, run an
memory protect memory protect
switches. 15 Registers Switches. 15 Registers ALU. Stable crystal clock. Built in power clock. Built in power
regulator. 5 slot plug in reguiator. 5 slot plug
expansion bus (less expansion bus (less
connectors)

NEWTRONICS KEYBOARD TERMINAL

AT $£ 114.20$ + VAT
The Newtronics Keyboard Terminal is a low cost stand alone Video Terminal that operates quietly and maintenance free. It will allow you to display on a monitor 16 lines of 64 characters or 16 lines of 32 characters on a modified TV, (RF Modulator required).
The characters can be any of the 96 ASC 11 alphanumerics and any of the 32 special characters, in addition to upper/lower case capability it has scroll-up features and full $X-Y$ cursor control. All that is required from your microcomputer is 300 baud RS232-C or 20 ma loop serial data plus a power source of 8 v DC and 6.3 v AC. The steel cabinet is finished in IBM Blue/Black. And if that is not enough the price is only $£ 114.20+$ VAT as a kit, or $£ 144.20$ + VAT assembled and tested. Plus $£ 2$ P \& P (monitor not included).

THE ATARI VIDEO COMPUTER SYSTEM -

£138 + VAT

Atari's Video Computer System now offers more than 1300 different game variations and options in twenty great Game Program TM cartridges!
Cartridges now available
all at $£ 13.90$ each + VAT
Basic Maths, Airsea Battle, Black Jack, Breakout, Surround, Spacewar, Video Olympics, Outlaw, Basketball, Hunt \& Score* ${ }^{*}$, Space War, Sky Diver, Air Sea Battle Codebreaker*, Miniature Golf
Extra Paddle Controllers - $\mathbf{£ 1 4 . 9 0}+$ VAT
*Keyboard Controllers - $\mathbf{£ 1 6 . 9 0}+$ VAT RACAL AP12, C12 TAPES: 10 for $£ 4.50$ + VAT NOW AVAILABLE 8K FULL BASIC FOR ELF II NEWSOFT GAMES FOR ELF II: 4 for $£ 5$ + VAT

SEND SAE FOR COMPREHENSIVE BROCHURE
Please add VAT to all prices (except manuals) P\&P $£ 2$. Please make cheques and postal orders payable to NEWTRONICS or phone your order quoting BARCLAYCARD, ACCESS number. We are now open for demonstrations and sales Mon-Sat $9.30-6.30 \mathrm{pm}$ near Highgate underground on main A1 into London

NEW ADDRESS: H. L. AUDIO LTD	
BIGGER	255 ARCHWAY ROAD,
PREMISES	LONDON N6 5BS

NEW PHONE No. 01-348-3325

HP HIT HOME

The calculator and desk-top mini people, Hewlett Packard, have moved into the personal computer market with their new model 85. Designed as a personal computer for engineers and scientists, among others, it is probably the first low-cost, high performance machine yet announced. Its main features are the 16 K of dynamic memory (controlled by one chip) of which 14.5 K is user accessible, 32 Ks worth of BASIC and operating system, proper graphics, full ASCII and numeric keyboards with system control keys, built in $5^{\prime \prime}$ VDU with 16 K of independant memory, a thermal printer/plotter that can copy direct from screen and the HP tape cartridge system that acts like a soft sectored floppy. The CPU is custom built, like many of the chips. The BASIC is to the latest ANSI standard and beyond and is complete with string functions, 12 digit accuracy, editing, built in security for data and programs plus a whole lot more. The tape storage system is based on that used in the HP minis but, unfortunately, not completely compatible. Each cartridge can store 217 K and access is much faster than a conventional cassette because of a directory system to locate each program.

INSTANT OPINIONS

If you run what is popularly called a service establishment, such as a restaurant, hotel or supermarket you may be interested in a new micro-based device from MSI. The unit is called Tellus and it is a replacement for those on-the-spot interviews that everyone runs away from. The unit is freestanding and consists of a number of pushbuttons wired as answers to a variety of relevant questions. Up to eleven questions may be used and it is reckoned that it takes about 30 seconds to answer them, there is
a choice of three answers to each, such as; good, bad or awful. When the questionnaire has been finished the customer presses record to save the answers for later analysis. Options available include a 12 column printer for instant results, extended memory to raise the capacity to 888 sets of answers and an accoustic coupler to connect the unit back to a head office. The unit runs from four standard batteries and costs between $£ 1500$ and $£ 2500$ depending on the options. For more information contact MSI at Data House, St Ives Road, Maidenhead, Berks,

Software will be available either immediately or in the near future and typical titles will be "BASIC Training", "Statistics" and "Electrical Engineering" see what I mean about being professionally orientated. The whole works fits into a box $16^{\prime \prime}$ by $18^{\prime \prime}$ by $6^{\prime \prime}$, that's just a bit
fatter than an Apple, and weighs under 20 pounds. Supplied with the machine is a 350 page manual and a set of fifteen useful programs along with a variety of other bits and pieces. Price of this very impressive machine is $£ 1950$ + VAT, expensive but still value for
money if you are looking for a real computer and not a games machine. For more details contact HP at King Street Lane, Winnersh, Wokingham, Berks. We hope to have a sample in soon and will try to do a more detailed report in the near future.

FEED YOUR MICRO

A pet food and equipment wholesaler has installed an accounting package developed by Southwest Technical to assist in the production of invoices and stock control at less than $£ 6000$ per unit. The system is based around a single piece of paper which acts as the invoice, goods received, statement and
cash posting document. Data is input through a VDU from the order and the system keeps track of the multiple discount structure as well as handling 5000 stock items and up to 1000 names and addresses. The program is written in BASIC and the system configuration includes floppy disks and a high speed printer to handle the three part stationery. All entries
follow on-screen prompts for ease of use and average access time is 1.5 seconds. Staff training is included in the cost of the package, as is all hardware. For details contact SWT at 38 Dover Street, Piccadilly, London W1.

What Is A Microprocessor ?
2 Cassette tapes plus a 72 page book deal with
many aspects of microprocessors including
Binary and Hexadecimal counting, Pro-
gramming etc.

Adams, C. BEGINNERS GUIDE TO COMPUTERS AND MICROPROCESSORS WITH PROJECTS $£ 5.60$
Understanding building programming and operating your own microcomputer

Ahl, BASIC COMPUTER GAMES

$£ 5.25$
Albrecht, B. BASIC FOR HOME COMPUTERS. A self teaching guide
£5.30
Shows you how to read, write and understand basic programming language used in the new personal size microcomputers.
Albrecht B. BASIC. A self teaching guide (2nd edition)
£5.30
Teach yourself the programming language BASIC. You will learn how to use the computer as a tool in home or office and you will need no special maths or science background
Alcock, D. ILLUSTRATING BASIC $£ \mathbf{2 . 6 0}$ This book presents a popular and widely available language called BASIC, and explains how to write simple programs.
Altman, I. MICROPROCESSOF $\mathbf{~} \mathbf{£ 1 0 . 6 5}$
Gives a general overview of the tuchnology design ideas and explains practical applications.

Altman, L. APPLYING MICROPROCESSORS
 £12.00

Follow volume which takes you into the second and third generation devices.
Aspinall, D. INTRO TO MICROPROCESSORS $\mathbf{£ 6 . 4 0}$
Explains the characteristics of the component.

Barden, W. Z-80 MICROCOMPUTER HANDBOOK
 £7.65

Barden, W. HOW TO BUY AND USE MINICOMPUTERS AND MICROCOMPUTERS

Discusses these smaller computers and shows how they can be used in a variety of practical and recreational tasks in the home or business.
Barden, W. HOW TO PROGRAM MICROCOMPUTERS
$£ 7.00$
This book explains assembly language programming of microcomputers based on the Intel 8080, Motorola MC6800 and MOS Technology MCS6502 microprocessor.

Barna, A. INTRODUCTION TO MICROCOMPUTERS AND MICROPROCESSORS
$£ 8.15$
Provides the basic knowledge required to understanc microprocessor systems. Presents a fundamental discussion of many topics in both hardware and software.
Bibbero, R. J. MICROPROCESSORS IN INSTRUMENTS AND CONTROL
£12.45
Introduces the background elements, paying particular regard to the dynamics and computational instrumentation required to accomplish real-time data processing tasks.
Lancaster, D. TV TYPEWRITER COOK BOOK
$£ 7.75$
An in-depth coverage of tv typewriters (tv's) the only truly low cost microcomputer and small display interface.
Lancaster, D. CHEAP VIDEO COOKBOOK £6.50 Lesea, A. MICROPROCESSOR INTERFACING TECHNIQUES £8.50 Leventhal. INTRO TO MICROPROCES. SORS £16.70 Lewis, T. G. MIND APPLIANCE HOME COMPUTER APPLICATIONS $£ 4.75$ Libes, S. SMALL COMPUTER SYSTEMS HANDBOOK
£5.75
The Primer written for those new to the field of personal home computers.
Lippiatt. ARCHITECTURE OF SMALL
COMPUTER SYSTEMS
$£ 4.35$ COMPUTER SYSTEMS Moody, R. FIRST BOOK OF MICROCOMPUTERS £3.85 (the home computer owners best friend)
McGlynn, D. R. MICROPROCESSORS Technology, Architecture \& Applications $£ 9.00$
This introduction to the 'computer-on-a-chip' provides a clear explanation of the important new device

McMurran, PROGRAMMING MICROPROCESSORS £5.50

A practical programming guide that includes architecture, arithmetic/logic operations, fixed and floating point computations, data exchange with peripheral devices computers and other programming aids

Monro, INTERACTIVE COMPUTING WITH BASIC £3.65

Nagin, P. BASIC WITH STYLE $\quad \mathbf{£ 4 . 0 0}$ Programming Proverbs. Principles of good programming with numerous examples to improve pro. gramming style and producing.

Ogdin SOFTWARE DESIGN FOR MICROCOMPUTERS
 £7.00

Ogdin. MICROCOMPUTER DESIGN $£ 7.05$ Peatman, MICROCOMPUTER BASE DESIGN
£5. 45
Peatman, J. B. MICROCOMPUTER BASED
DESIGN
$£ 20.40$
This book is intended for undergraduate courses on microprocessors.

Peckham, HANDS ON BASIC WITH A PET $£ 8.70$

 Peckham, BASIC - A HANDS ON METHOD£6.85
Bursky, D. MICROCOMPUTER BOARD DATA MANUAL £5.40
Bursky, D. MICROPROCESSOR DATA £5.40
Includes complete description of the processor. Support circuits, Architecture, Software, etc
Coan, J. S. BASIC BASIC $£ 7.50$
An introduction to computer programming in BASIC language.
Coan, J. S. ADVANCED BASIC £7.30 Applications and problems
Ditlea, A SIMPLE GUIDE TO HOME COM-
PUTERS Freiberger, S. CONSUMERS GUIDE TO PERSONAL COMPUTING AND MICROCOMPUTERS
£5.50
Frenzel, L. GETTING ACQUAINTED WITH MICROPROCESSORS
£7.10
This is an invaluable book for those who want to know more about hobby and personal computing.
Gilmore, C. M. BEGINNERS GUIDE TO MICROPROCESSORS £4.75
Grossworth, BEGINNERS GUIDE TO HOME COMPUTERS E3.10
Gosling, R. E. BEGINNING BASIC £3.25 Introduces BASIC to first time users.
Graham, N. MICROPROCESSOR PROGRAMMING FOR COMPUTER HOBBYISTS $£ 7.00$
Haviland, N. P. THE COMPULATOR BOOK
£6.20
Building super calculators and minicomputer hardware with calculator chips.
Hartley, INTRODUCTION TO BASIC $£ 2.40$ Heiserman, D. L. MINIPROCESSORS FROM CALCULATORS TO COMPUTERS £4.85
Hilburn, J. L. MICROCOMPUTERS, MICROPROCESSORS, HARDWARE, SOFTWARE AND APPLICATIONS £16.95 Complete and practical introduction to the design, programming operation, uses and maintenance of modern microprocessors, their integrated circuits and other components.
Klingman, E. MICROPROCESSOR SYSTEMS DESIGN
£16.95
Outstanding for its information on real microprocessors, this text is both an introduction and a detailed information source treating over a dozen processors, including new third generation devices. No prior knowledge of microprocessors or microelectronics is required for the reader
Kemeny, J. G. BASIC PROGRAM-

MING

£6.55

A basic text

Korn, G. A. MICROPROCESSOR AND SMALL DIGITAL COMPUTER SYSTEMS FOR ENGINERS AND SCIENTISTS $£ 21.00$
This book covers the types, languages, design software and applications of microprocessors

Duncan. MICROPROCESSOR SOFTWARE ENGINEERING
 €13.50

Rao, G. U. MICROPROCESSOR AND MICROPROCESSOR SYSTEMS £20.50 A completely up-to-date report on the state-of-the-art of microprocessors and microcomputers written by one of the leading experts.
Rony, P. H. THE 8080A BUGBOOK: Microcomputer Interfacing \& Programming
$£ 8.15$
The principles, concepts and applications of an 8 -bit microcomputer based on the 8080 microprocessor IU chip. The emphasis is on a computer as a controller.
Scelbi. 6800 SOFTWARE GOURMET GUIDE AND COOKBOOK $£ 8.80$ Scelbi. 8080 SOFTWARE GOURMET GUIDE AND COOKBOOK £8,80
Scelbi. UNDERSTANDING MICROCOMPUTERS $£ 8.60$
Gives the fundamental concepts of virtually all microcomputers.
Spencer, GAME PLAYING WITH BASIC $£ 4.70$
Schoman, K. THE BASIC WORKBOOK £3.70 Creative techniques for beginning programmers.
Sirion, D. BASIC FROM THE GROUND UP £6.00
Soucek, B. MICROPROCESSORS AND MICROCOMPUTERS $\mathbf{£ 1 9 . 0 0}$
Here is a description of the applications programming and interfacing techniques common to all microprocessors
Spracklen, D. SARGON
£9.75
A computer chess program in Z-80 assembly language.
Titus, MICROCOMPUTER ANALOGUE CONVERTER $E 7.45$
Titus, 8080/8085 SOFTWARE DESIGN $£ 7.45$ Tracton. 57 PRACTICAL PROGRAMS \& GAMES IN BASIC
£6.40
Programs for everything from Space war games to Blackjack
Waite. M. MICROCOMPUTER PRIMER £6.25
Waite, YOUR OWN COMPUTER £1.50
Introduces the beginner to the basic principles of the microcomputer.
Ward. MICROPROCESSOR / MICROPROGRAMMING HANDBOOK £6.00 Authoritative practical guide to microprocessor construction programming and applications.
Veronis. MICROPROCESSOR £12.85
Zaks, R. INTRODUCTION TO PERSONAL AND BUSINESS COMPUTING £8.50 Zaks, R. MICROPROCESSORS FROM CHIPS TO SYSTEMS
$£ 7.50$
Note that all prices include postage and packing. Please make cheques, etc, payable to Computing Today Book Service (Payment in U.K. currency only please) and send
to
Computing Today Book Service,
P.O. Box 79, Maidenhead, Berks

Having manipulated your data you need to be able to display it. All the details are explained in this months offering.

The Mk. 14 manual contains several routines for mathematical work, such as multiplication, division, square root and greatest common divisor. These are interesting as exercises in number crunching, but they don't really represent the sort of job that an INS8060 is bought for, nor indeed was designed for. In addition, the methods (algorithms) which are used for some of the mathematical exercises will not be known to most users of the Mk.14. If we want to multiply numbers, it's a darn sight easier to use a calculator, and for really involved mathematics, a Texas TI-57 programmable calculator at around $£ 25$ will outperform virtually anything you can buy in the microprocessor/ home computer line, with the exception of a certain device which uses a $Z 80$ to control a separate number cruncher chip.

Programmed Display

What are microprocessors used for then? Well, one important use is the manipulation of data, and that's the use for which most computers are bought, even if the data amounts to some form of game. We'd better start on that sort of work right now - starting with the manipulation of the display, since that forms the basis of a whole lot of activities.

Now the display of the Mk. 14 is a set of seven-segment displays which are under software control. This phrase means simply that the display sections are activated by data bytes from the microprocessor under the control of the monitor program. This is very different from the hardware control of the conventional BCD counter in which the counter outputs drive a decoder which in turn drives the sevensegment display. The hardware method will produce only the figures or letters which are obtainable from the decoder, nothing else. The display of the Mk.14, being driven by the monitor program, can also be controlled by a program written by yourself - if you know how. Here's how.

Each LED unit in the display (unit in this context means a group of seven segments, of which the Mk. 14 has nine) is addressed like a memory location. Despite the name of the seven-segment display, there are actually eight segments, the eighth being the decimal point, so that each separate segment of a display can be controlled by one bit of a byte. Fig. 1 shows how this is arranged, and what bit numbers will switch on what segments. We can turn on any combination of segments simply by using a byte which is the sum of the bits we want to turn on. For example, if we want to turn on segments a, b and c , we look up the bit numbers, which are $01,02,04$ respectively, and add to make 07. The byte 07 fed as a data byte to the "memory" address of this unit will now turn on these segments. Remember that the addition has to be hexadecimal.

We can turn on any combination of segments, therefore, by writing a number to the correct address, so that we can generate any character which can be generated with a seven segment display, plus decimal point. Fig. 2 shows a suggested list of figures and letters which can be displayed.

Fig.1. The seven segment display structure and the segment codes for the operation.

I've used a bit of imagination to list a small a (a) and a capital R, because a capital A and capital R can't be distinquished. With a few tricks of this kind, quite a large range of letters can be displayed, but M, K and W remain elusive!

Instructed To Send

Now how do we address each LED? This requires some knowledge of what the hardware does and how the monitor program is arranged. The memory decoding of the hardware, as you will remember from Part 7 of this series, arranges that the unit on the extreme right hadn side has the address ODOO. That's outside the range of addresses we can get by program-relative addressing from RAM (all of which is between 0F12 and 0FF8). The solution, which you snap out at once, is, of course, to use indexed addressing and a pointer register, and by convention we use pointer P1 for such exercises.

In the normal course of such things we would load the number OD into the accumulator, then exchange (XPAH) with the high byte of P 1 , then load 00 and exchange with the low byte (XPAL). As it happens, we don't have to put these steps into a program to write directly to the display, because of the way in which the monitor program is arranged. Just as the monitor program "hands over" to your own program, the monitor program loads up the pointers P1 and P2, along with the accumulator, extension register and status register, from addresses OFF9 to 0FFF in RAM, the highest addresses of the RAM. These addresses are kept clear for this purpose, the only part of RAM which is cleared when you reset or switch on at first, but there's no reason why you shouldn't make use of this feature to load up data bytes into the registers - we have already used this to read data from the accumulator (Part 8). By keying up OFF9 (assuming we

Letter	Data byte
a	5F
b	7C
Cor c	39 or 58
d	5 E
E ore	79 or 7B
F	71
g	6 F
h	74
i	06 or 30
)	2 F
L	38
n	37
-	5 C
P	73
,	33
S	6D
t	3D
U	3E
$\mathrm{X}(\mathrm{H})$	76
y	6 E
Z	5B
1	06 or 30
2	5B
3	4F
4	66
5	6D
6	7 D
7	07
8	7 F
9	67
0	3 F
.	80

Fig.2. The authors' suggested list of display characters and their data codes.
remembered to press Abort first), and then Term, we can load in the byte OD into OFF9, so setting the high byte of P1 to this number. Because the monitor has cleared all of these addresses at reset, we don't need to load 00 into the next address, OFFA to complete the address 0D00. It's as well, though, to use Mem to advance to OFFA just to check that 00 is contained here. Remember also that if you reset at any time, these addresses will be cleared, and OFF9 will have to be re-loaded.

This address, ODOO, is the address of LED zero, the one on the extreme right-hand side, so that any number written to this address will cause this particular unit to come on. Try the program in Fig.3. It starts with reset, to clear the registers in the event that you had a program running, and the keying in OFF9 and Term allows you to set OD, loading up pointer P1. Remember to use Mem to check OFFA. The next step is Abort - NOT RESET. That's important, because if you use RESET, you'll reset the pointer registers and clear the addresses from OFF9 up. Please don't write and say that they are not completely cleared, you have 20 stored in OFFF. This happens after a program run, and is because the SENSE-B input is high - disregard it.

After pressing Abort, you can key in 0F20, out usual starting point for a program, press Term, and load in the program in the usual way. Press Abort again so that you can return OF 20 , and then press GO. What happens?

It's not exactly unexpected - ODOO has selected display unit 0 , and the data byte which we're writing to this address is illuminating segment a of the display unit. Suppose we want to write a figure or letter in this part of the display
instead of just a bar? Easy, at address OF21 in the program of Fig.3, we simply insert whatever number code or sum of number codes we want, using the table in Fig.2. When the program runs, whatever you've selected in this way will appear at display unit 0 . There I go, rabbitting on, and I haven't told you how to escape! The display program is an endless loop, meaning that the instructions will repeat until the loop is broken, and the keyboard ignores all other instructions while this is going on. There's nothing inside the program to make it stop, such as a timing instruction (later, lad, later), so the only way of getting out of it is to use RESET. This stops it all, and also clears pointer register P1. It doesn't clear the memory, and you'll find your program

Address	Data	Reminder
	RESET	
OFF9	OD	sets P1
. . . .	ABORT
OF20	C4	load immediate
0F21	01	01
0F22	C9	store, indexed P1
0F23	00	zero displacement
OF24	90	jump....
OF25	FA	to OF20 again.

Fig.3. Wiring a byte to display segment 'nought'.
still loaded in the same place, but the program can't be run again until P1 is set up again to 0000. If you want to play about with message writing, then it's a good idea to start the program with the section shown in Fig.4, and to run from the new starting address, OF1D. This will load up P1 automatically for you on each run, so that the program is ready to operate again immediately after a reset. You can then modify the data byte for each run as you want, and observe the effect without having to load up P1.

Address	Data	Reminder
OF1D	C4	load immediate
OF1E	OD	OD
OF1F	35	XPAH(P1)

Start at OF1D after resetting, so that P1 is correctly loaded.

Fig.4. Making the program easier to use, add it to Fig.3.

Writing To Them All

The next step from all this is to write something to each LED. There's no reason why we shouldn't do this in a completely obvious way, as we've shown in the program of Fig.5. Though this is a much longer program, there's no mystery about it. For each unit of the display, there's a load-immediate instruction (C4) which is followed by the number byte, the sum of the separate bar codes, for the number or letter to be written, and then a store instruction (C9) followed by a displacement. This store instruction is a P1 indexed instruction, and once again P1 has to be loaded, either by writing OD into address 0FF9 immediately after resetting, or by including a P1 load in the program. The numbers which follow the C9 instruction, the displacements, are in fact the numbers of the display units, starting with 00 on the extreme

right hand side.

Because the numbering is right-to-left, incidentally, the first letter to be displayed as the program runs is the last letter of the message. If you want to leave a space, simply load 00 where you want the space; if you want a full stop, use the decimal point, code 80 . As usual, the jump instruction (90) at the end of the program causes the program to keep looping round continually, so that the display appears to be static. As before, if you want to get out of it, you have to press reset, and you'll have to load P1 up again one way or another if you want to run it again.

Address	Data	Address	Data
OF20	C4	0F31	39
OF21	33	0F32	C9
OF22	C9	0F33	04
OF23	00	0F34	C4
OF24	C4	0F35	37
0F25	30	0F36	C9
OF26	C9	0F37	05
OF27	01	0F38	C4
0F28	C4	0F39	30
0F29	5 F	OF3A	C9
0F2A	C9	0F3B	06
0F2B	02	OF3C	C4
OF2C	C4	0F3D	6D
OF2D	38	0F3E	C9
OF2E	C9	0F3F	07
OF2F	03	0F40	90
OF30	C4	0F41	DE

Fig.5. A very simple message display program.
As a rather primitive method of getting a message over, the program of Fig. 5 is acceptable, but it has several drawbacks. One is that the message letters are loaded immediately, they are scattered all the way through the program following each C4 instruction, so that it's not easy to change the message once it's been altered. The other flaw is that the message is static - we can show only as many letters as we have display units for. The first problem we'll deal with now - the second next month.

The load immediate problem has a standard solution, the use of a table. A table is simply a list of data bytes stored together in some part of the memory, with a program which selects whichever byte is wanted. The advantage of using a table for a message display is that we can change the message in the table easily (dial up the starting address, Term, enter, and then use Mem to step through the table), make the message longer or shorter, all without too many alterations to the program. This sort of thing becomes particularly important when long programs are used, as no-one wants to risk scrambling up a long program by putting alterations in, especially if the program has been loaded from tape. Finally, the use of a table lets us write a moving message program, which we'll look at next month, using a technique rather different from the one in the Mk. 14 manual.

A Message To You

To work then. Using a table means a very considerable change in the method we've used to program our message. Each byte of the message will now have to be fetched from the memory table, then stored at an LED display unit address, from OD00 upwards. This is an obvious application for auto-indexing. Remember auto-indexing? You set up a pointer register to an address and then make the address in the register increment or decrement each time you use it. That
way, we can dispense with repeating different load instructions. For example, if we store the start of the table of message bytes at address 0F50, we can use an auto-indexed load instruction so that the first time a load is called for, the load is from 0F50, the next time it will be from 0F51, the next time from OF52 and so on. We can do exactly the same with the LED display unit numbers, auto-indexing the store instruction so that the first store is to OD00, the next to 0D01, the next to 0D02 and so on. Provided we keep the table in correct order, the right byte is then automatically loaded to the correct unit of the display. This way, the main part of the program needs only one load and one store instruction, each auto-indexed, and we just keep looping round to repeat the performance.

It looks too easy; there must be a snag somewhere! There is, when you think about it. Suppose we have eight bytes in the table, so that we are going to display at eight LED units. Somewhere or other in our program, we are going to have to have some instruction which will detect when eight bytes have been fetched and displayed, because there's no byte in the ninth part of the table (or only gibberish) and no LED after the ninth. To do that, we set up a counter by loading the number 8 into a vacant part of memory and using a B8 instruction. What's a B8? It's decrement and load the number is decremented by one (8 is reduced to 7,7 to 6 and so on), then loaded into the accumulator leaving the same decremented number in the memory. We can then use a different jump instruction, JNZ, jump-if-not-zero. If we haven't reached the last LED unit, the program will leap back to load up another data byte and display at another LED unit, but if we've reached the last one the number which is loaded into the accumulator at the decrement-and-load step is zero, and the program won't loop back this time. Just what we want.

Address	Data	Address	Data
OF20	C4	0F2F	C4
OF21	08	OF30	50
0F22	C8	0F31	32
OF23	FC	0F32	90
OF24	C6	0F33	EC
OF25	01	. AB	T.
0F26	CD	OF50	33
OF27	01	0F51	30
OF28	B8	OF52	5 F
0F29	F6	OF53	38
OF2A	9 C	OF54	39
OF2B	F8	0F55	37
OF2C	C4	OF56	30
OF2D	00	0F57	6 D
OF2E	31		

To set up: RESET, Address OFF9, Term : 0D, Mem, 00, Mem, 0F, Mem, 50
Fig.6. A more sophisticated message writer, see text for details.
Next problem. So far, we've loaded each byte from the table to its correct place in the display and, of course, each byte still remains in its place in memory. One run through, however, is too brief to see, a mere phantom flash as it were. We need to keep repeating the performance, looping back right to the start endlessly so that the whole message can be displayed.

As usual, this isn't completely straightforward, because at the end of the program so far as we've taken it, pointer P1 will be set at 0007 (assuming an eight byte message) and pointer P2 which we're using for the table will

MPU’s BY EXPERIMENT

be set at 0F57. These last figures are 7 rather than eight because the first one was 0 rather than one; we started at 0D00 and 0F50, not 0D01 and 0F51. If we simply loop back now, there won't be any display of any byte we want because the starting addresses are wrong. Before we can loop, therefore, we have to correct these starting addresses. This isn't very difficult, because only the lower byte of each has to be changed. For each correction, there's a load-immediate of the lower byte, followed by an XPAL instruction for the pointer register. That's a 00 for P 1 , with the XPAL code 31, then 50 for P2, with its XPAL code 32 . Remember that you have to use different codes when you use different registers. After that it's a matter of looping back to the beginning so that the program can run continuously.

Fig. 6 shows the first version of the complete message program. The action starts at 0F20 with a load-immediate of 08 . This is for the byte counter - it has to be loaded afresh at the start of each loop, because it is decremented each time a byte is fetched and sent to the display. This number is then stored by the C8 FC instructions into the address 0F1A, one place before the start of the main program. The fetch-anddisplay routine starts at OF24, with the auto-indexed load instruction C6, which is relative to pointer P2, the pointer for the table whose starting address is 0F50. The byte following C6 is 01, which specifies that the pointer is to be incremented by 1 after each fetch. Note incidentally that incrementing is done after fetching, decrementing before fetching, an invariable rule of auto-indexing. The CD instruction is a store-relative-to-P2, auto indexted, and is also followed by 01, so that this address also increments by one
after each fetch. These are the main load and store instructions which get the right bytes to the right display units, then we have the B8 decrement-and-load from address 0F1A, using displacement F6, which checks the number of bytes which have been loaded. This is then followed by JNZ, as described, and then the pointer re-load instructions up to OF31. Finally, the jump instruction at OF32, displacement EC, starts the whole program over again at OF20.

The routine for using this program is to reset, key in 0FF9, Term, 0D (to set pointer P1), then Mem twice to OFFB to set OF, then OFFC to set 50 . Then Abort, address 0F20, Term, and start writing the program. After 0F33, Abort, address $0 F 50$, and Term to key in the first message byte. Step through, using Mem, then Abort, and address OF20. Remember not to use RESET, otherwise you'll lose the pointer addresses. At OF20, finally, press GO and watch that famous name light up!

Home Try

Now for your homework. First of all, how about loading OF into the upper byte of P2 at the end of the program. and $O D$ into the upper byte of P1? This lets you start right away after resetting. Secondly, because the program is an endless loop, you can start anywhere provided the first byte of the program is an instruction which can be carried out (you can't start from a data byte, of course). With that in mind, what about starting the program with the pointer load instructions?

Now that you can start up the program so much more easily, you can write your own message. Keep it polite!

TRANDAM

COMPONENTS AND SYSTEMS FROM TRANSAM COMPUTERS

\＄N74LSDON	22	SN141S54N	21	SN74［\＄138N	95	SN74IS1950N 85	5＊＊74．5325N	255			RhMs	
SN74L501N	22	\＄N741555N	21	SN74LS139N	95	SNTALSIG6N 120	SN7415326N	2.55	8212	I	2101	32
5N74LSO2N	26	SN74LS63N	150	\＄N74L5145N	120	SN74LS197N $1: 20$	SN742S327N	255	8216	280	21．02． 4	1.20
SN 14LSO3N	28		35	SN7615148N	1.75	SN74 S22 21 N 125	SN7415352N	1.35	8224	2.80	2111	232
SN74iSO4N	28	SN74LS74n	40	SN7415151N	35	SN7als 5 SON 220	SN74L5353N	150	3 353（F9）	10.00	2112	2.46
SN74L505N	26	SN74．575N	4	5N7415153N	60	5N74LS241N 190	S＊74LS365N	65	8228	4.20	8610	4.00
SN74LSOEN	20	\＄N74ision	35	SN74 5154 N	1.80	5N74LS242N 190	\＄NT4 \＄3366N	65	812sa	1.75	8154	11.50
SN74LSGSN	22	5N74LS780	35	SN745155N	1.26	SN7ES75， 125	Sv74is367N	65		1.90	21141450	5.50
5 N 141510 N	12	SN74LSE3AN	1.15	SN7415156s	126	SNTHSTEAN 210	5N145368N	65	8522	8.75	21141250	180
SN741511N	26	SN74 S8BN	1.10	\＄N741515 ${ }^{\text {d }}$	80	\＄N74LS245＊ 3 E0	SN74［5373N	175	8257	6.00	74Cs20	11.00
5N74［S12N	25	\＄ 8741586 N	40	SN74LS158N	99	5174．52478 125	Svist5374	1.70	8253	11.00	$74 \mathrm{C921}$	11.00
SN74LSI3N	55	SN74LSSON	85	\＄N7415160N	1.16	SNTCLSJSES 1.95	54tels764	12	31315	500	4	1100
$8 \times 741514 \mathrm{~N}$	69	SN74LSSIN	98	SN3415161／	1.15	5v／4，51454 130	5v24．53）N	1.76	825？	1100	4 CO	500
5N74LS15N	25	\＄N74．592N	90	SN7415162N	1.15	SN74 S27 18 146	5074．53789	\＄73	8759	12.50	4822	700
5 N 74.520 N	20	SN7445938N	65	SN74LS163N	90	SN74LS253N 125		140	8155	1250	4335	100
SN74LS21N	28	\＄N74LSS50N	120	SN7415184N	1.50	SNats25 in 140	5 N 74538 N	155	6402	500	4085	100
5N741522N	26	SN 241596 N	1.75	SN74LS1654	1.70	SNT4LS258N 95	5vi4is 3 6\％	57	68219	450	（10）	1 c
SN741S26N	29	SN74LS107N	39	SN74LIS166N	1.75	\＄N74 52591 1A5	SN7S 5 S390N	198	8850	480	411838	500
SN741527M	35	SN7415109N	39	\＄N74L5168N	1.95	SNTALS260k 39	\＄N74LS393N	1.50	86529	5.50	119	2000
SN741520N	35	SN74．S12\％	39	SN7415169N	1.95	\＄2374S261N 3.50	\＄NT4LS395N		Ar 52378	11.50	ramio	800
Sk741830N	25	SN741513 ${ }^{\text {N }}$	44	SN74LS170N	250	\＄37415260\％ 39	SN7415396N	1.70	MC14411	12.00	2roctc	800
SN74LS32N	27	SN74LS14N	44	SN74LS173N	220	SNT4LS273N 1.85	SN7415398N	2.75	M 53109	12.43	TECAP 10	9.50
$5 N 741533 \mathrm{~N}$	39	\＄N744\＄122N	79	SN74LS174N	1.15	SN74152794 77	SN74LS399N	1.86	M57180	10.00	280scric	9.50
SNT41537N	29	SN74LS123／4	90	SN74L5175N	$1{ }^{15}$	SV74LS280N 1.75	SN74LS424N	4.50	M5 3161	10.00	EPROMS	
SN741538N	29	\＄N7445124N	1.50	SN74LS181N	2.75	5N7415283N 180	\＄N14LS445N	125	TMS8011	5.00	1702	5.00
SN74 S40	25	SN74LSI25N	65	\＄N74LS190N	1.75	SNT4LS2901 180	SNTMISA4TN	1.85	811595	1.80	5204	5.00
［5N74LSA2N	79	SN741S125N	65	SN74LS191N	1.75	5N74．5793N 1．80	5N74L5490N	1.95	811598	1.60	2708	1.00
SN74［S4］N	95	\＄N745132N	75	SN74LS192N	145	SN14L\＄295AN 220	SN74LS668N	35	811597	1.80	25.16	25.00
SN7415488	95	SNTALSI33N	39	SN7415193N	1.75	SN／4LS298N 220	SN74 5669 N	95	811598	1.00	2532	50.00
SN74lS49N	1.89	SN74LSI30N	40	SN741\＄189		\＄N74［\＄324N 180	5N74iS670N	2.30				

DPS． 1 MAINFRAME－PASCAL SYSTEM

S100 to IEEE spec

ITHACA
PASCALZ build your own
Pascal Micro Daveionmen： systern IEE－ SiOO bus system
ising DPSI main using DPSI main
frame．Supports K feame Supports K
ASSEM
PLE Z and

S100 BOARDS

8K Static RAM board 450 ms ）E123．75 | 8K Static RAM board（250ns）E146．25 | |
| :--- | :--- |
| 280 cpu board $(2 \mathrm{MHz}$ ） | E131．25 | $\begin{array}{lr}280 \text { Gpu board } 14 \mathrm{MH} / 1 & \mathrm{E153.75} \\ 27082716 \text { EPROM board } & \mathrm{EB3} 75\end{array}$ Prototybe poatd ibate Doard 128 W ，I Ascul K2 disc operating Svstem

ASSEMBLE
Macro ASSEMBEEZ Macro A
£108． 75
E 131.25
$£ 56.25$
E131．25
E56．25
E3750
E131．25

WE STOCK THE FULL RANGE OF \＄TOO CARDS AND ACCESSORIES

VISIT OUR SHOWROOM

WE ALSO STOCK
VERO products incluti A comprehensive range of books－magazines． ment．Weller soldering equipment．Ribbon Cables，tools．tapes．dis－ ketres and connectors

CRYSTALS

 Lo0k100k
200 k

TRANSAM COMPONENTS LTD， 12 CHAPELSTREET，LONDON NW1

CP／M
AVAILABLE NOW FOR TRITON
Diec operating eyturn complate with text editor， assembler，debugger，＊ystem utilities and complete file management．Makes Triton fully CP／M competible and able to rum CP／M besed software．Triton will support up to four 51 or 8^{*} drivea mingle or double density fulf CP／M software user group facilities availabla．SAE for deteifs．

DISK DRIVES \＆POWER SUPPLIES

\＄A800 $58^{\frac{1}{\prime \prime}}$ drive
8205.00
8390.00

Power one quality power supplies
CP323
CP $2 \times 5 \frac{1}{2}$
PSU
CP205 1．8．PSU
CP2062－8＂PSU

$E 33.00$ $£ 6000$

86000
556.00
556.00
576.00

TCL PASCAL cP／M compotible
A standard Pascal compiter avaifabie on a readent（20k） on $8^{\prime \prime \prime}$ disc plus documentation． CP / M version $\mathrm{f} 90-{ }^{-P . O . A . A .}$

COMPUCOLOR II－FULL COLOUR

S100 DISC CONTROLLER £195 Vlus
As used on Tiron，Fully builit
will drive $8-8$ or $8-5 \frac{1}{2}$＂drives．
Single or couble sensity，Wo
with all Shugart compatible
on board crystal．CPU independer

MULTIWAY CONNECTORS

INSULATION PIERCING		$\begin{aligned} & 3570 \\ & 3672 \end{aligned}$	$\begin{aligned} & 480 \\ & 474 \end{aligned}$		
2 T way dug	2.30				
${ }^{26}$ wivplug	2.70		$\begin{aligned} & 474 \\ & 500 \end{aligned}$		
34 way plug	3.30	43：86	550		
50 way plueg	6.50	50.100	580	＋tis	
	340 4.00	0010 156 PITCH			
34 way sht	480	$5{ }^{\text {\％}}$	125	，	
30 m⿻上丨 吅	8.00	1920	1.50	10	
Enge Conmpte		15．30	2.20		
60401 1－900		＇536	2.30	11	
12．44	320	$22+4$	2.85	T－	
7530	360	26.58	3.30		
26： 8	190	36：72	3.90		
3060	415	63：88	4.60	64 way OIN male 64 way DIN rexsole	$\begin{aligned} & 2.50 \\ & 4.50 \end{aligned}$

CATALOGUE

Tel：01－402 8137 Telex： 444898

Adam may have wandered round the garden of Eden but this particular ADAM is a high powered business system. What can it do? Read on!

Adam our forebear was reputedly a very open person yet to ADAM the computer there is rather more than meets the eye. ADAM looks like a particularly neat but otherwise conventional one-person computer system, with the usual television-type screen and keyboard, with a printer. There is also a disk unit with one fixed and one removable cartridge, each with a 5.2 MB capacity.

A 'physical key' is required to turn on the mains switch, like the ignition in a car. Once the power is on the screen immediately tells you what to do next, step by step. Top of the list is to ensure that the removable 5 megabyte disc you will be using is safely duplicated on a fixed disc of similar capacity in the machine. Normally you will "copy down" earlier work from a removable disc you have brought to the machine but sometimes you may want to "copy up" work onto an empty disc. In allowing this choice, ADAM's series of questions and prompts make it difficult for you to make a mistake. An experienced operator may find the process tedious, though it takes only a very few minutes, but business users will appreciate the value of the almost foolproof discipline.

Teaching ADAM

You are now ready to give ADAM some data to store and to teach it what to do with that data. This does not involve the use of any kind of conventional programming language, only the creation of files and the definition of some "nouns" and
"verbs". You might have a file called "customer", holding each customer's reference number followed by his name, address, terms of business etc - not very different from a traditional computer datafile but rather more easy to set up without previous experience. An example of the way a file is set up is shown in Fig.1.

The file structure is established by listing the "nouns" that describe what data the file will contain. Readers used to BASIC and other programming languages can think of nouns as the names of variables (numeric or string, ADAM does not mind) with a permitted length of up to twenty-four characters (eg TOTAL PAY FOR 1978/9).

Verbosity Is The Key

A verb is ADAM's counterpart of a program or subroutine. No prior knowledge of computing is required to write verbs, because ADAM prompts the user at every stage, but it is desirable to know the business you are 'teaching' (rather than 'programming') ADAM to serve. Clerks and secretaries, even business men sometimes, are the kind of people intended to develop ADAM's vocabulary. A logical mind is an asset in anyone teaching this Logical Machine (as the makers prefer to call it, rather than 'computer') but actual programming experience in the usual languages can be a slight disadvantage if it leads to expecting to encounter rules and disciplines which ADAM certainly has but conceals from the user. Fig. 2 illustrates the way a verb is defined. Notice that it acts on nouns and may incorporate the use of other verbs, each of which will have to be separately defined elsewhere.

ADAM's verbs are rather like structured programming, but easier for someone else to follow. Users are encouraged to keep their verbs relatively short (say from ten to twenty lines) and experience with a large application shows that this, more than any other controllable factor, speeds up data processing significantly.

A minor feature that BASIC-trained programmers will appreciate is that when a new line is added to a verb any required renumbering of lines is taken care of automatically.

Another friendly touch is that numbers are normally
printed (if space permits) with commas separating groups of three digits - just as one would write or type them. Nor does it matter whether or not such numbers are included in numeric input.

ADAM has a permanent repertoire of some 50 standard verbs and nouns, listed in Table 1, on which all user definitions are ultimately based. Readers of PCW might think of the 50 words as analogues to the instruction set associated with every CPU chip, but John Peers (who 'conceived' ADAM in England before deciding that it could only be realised in California) would not thank anyone who sought to destroy the image of a black box which does whatever the user wants in the user's way.

System Experience

User experience with ADAM soon showed that large numbers of them wanted the same things and to avoid constant reinvention of similar wheels the Logical Machine Company (known as Lomac before a prior user of that abbreviated name protested) now supplies, and is regularly extending, a set of "standard utility verbs". A few examples are shown in Figure 3 but the list, which numbered 219 at my last count, is regularly being extended. While many of ADAM's features are unique to that machine the disemination of useful subroutines (mostly designed by or for other users) is something that all computer suppliers could easily copy, if they chose to do so. Some specialist user groups attempt this, in a limited way, but I do not know of a single machine manufacturer other than the Logical Machine Company who demonstrates comparable unmercenary interest in their users' wellbeing.

It is easy to get ADAM to do useful work but it is also tedious. A first-time users of a computer and sets out to be easy and friendly and liberated from dependence on specialists. A long delay between delivery of a machine and its beginning to do useful work is far from friendly so, to reduce the learning time, the Logical Machine Company now provides ADAM users with a set of skeletal models for some of the most commonly encountered applications. Naturally, these models are self documenting and it is easy for users to alter them. Indeed, they are encouraged to do so (see extract from the supplier's literature in Fig. 4 to produce systems which exactly suit the needs of each individual business, which is much better than forcing the business to fit the mould of a "standard package". Fig. 5 itemises these skeletal models, all of ADAM currently costs $£ 17,500$ in the UK. The small capacity Tina is currently priced at $£ 11,500$ for any one basic version. Several hundreds are in use in the USA through the Cheltenham and Manchester Business Centres of Beam Office Equipment Ltd (061-831-7292).
"What about file handling?" asked a friend. "Surely you need some disciplined procedure to open and close data files for reading and writing?" Of course you do, but the ADAM user is left unaware of it. ADAM has a very complete and meticulous monitor which takes care of all those details, indeed which would seem by some standards to be extravagant in its endeavour to make the machine foolproof and easy to recover from the results of any operator error.

Great care is also taken against hardware failures. The mains supply is not expected to be clean, so it is adequately regulated and protected - other manufacturers please copy! ADAM it is said to be unaffected by a supply voltage reduction of as much as 19% and in the event of complete power failure standby batteries are switched in automatically to maintain the otherwise volatile memory. When power is restored (within four hours) the user just carries on from the point of interruption, with no special

re-start procedures required for $A D A M$ to operate.

In Conclusion

At the end of the day ADAM's output looks very like that from any other good-quality system but the method of getting there, reliably and without dependence on experts, is very friendly for the ordinary user and it is this "de-specialisation" which characterises ADAM as the probable forerunner of a new generation of computers.

RECAP
EMFLDYEE NAMES is a file, 1 IIses COMMENT

The REFerence to this file will be the cortents of 2 and COMMENT
the noun EMPIGYEE NPME
3 and EMPLIVEE NAME
4 and EMPLOYEE NO
Fig.1. Creating a file. This unusually short example from a payroll, suite exists to allow indexing by employee name. The 'Employees' file, indexed by employee number, uses 35 nouns. The COMMENT lines, like REMARK in BASIC, have no effect in processing.
RECAF
F.R MENIS $i \leq a$ werb, Dees CLEAR SCREEN and LCENTER "PAVFOLL" and MOVE 0 MENJ NLIMBER and IIGFLAY LINE FEED
and DIGPLAY LINE FEED
and MENI! DISFLAY "ADI NELS EMPLOYEES"
and MENU DIEFLAY "EMPLOYEE RECORD MAINTenanse"
8 and MENL DISPLAY "ENTER CIPRENT PAY INFOMmtion"
9 and MEML DIGFLAV "FRINT PAYFOLL REGISTER"
10 and MENII DISFLAV "PRINT PAYFOLL CHECKS"
11 and MEW! DISFLAY "TERMINATE GN EMPLOYEE"
12 and MENU DIGFLAY "EMFI OVEE INOUIRY"
13 and SEIECT PR TAGK
14 and IF FAVFOLL SELECTION A "END"
do REFEAT

RECAF

SELEIG FR TASK is a werb,
1 Dines DISFLAY LINE FEEII
2 and :MESSAGE "Select, by numbor (or END if no more)"
3 and INPITT 3 FAVFOLL SELELTION

Fig.2. Use of typical VERBS in a payroll system. Each verb is typically a sequence of other verbs which will have been built up individually from Adam's basic repertoire of 50 odd words. The second verb listed above features as item 13 in the first verb. It makes for faster operating to have a larger number of short verbs instead of fewer but longer ones.

STANDARD NOUNS

The following table lists the standard Nouns and their abbreviations. Note that there are no abbreviations for the Nouns OBJECT and REF.

NOUN	ABBREV
DIF	DF
FRAC	FC
HEAD	HD
INTG	NT
LENGTH	LT
OBJECT	
PROD	PD
QUOT	QT
REF	SM
SUM	TAIL

STANDARD VERBS

The following table lists the standard Verbs and their abbreviations.
VERB
ABBREV
$+$

ALTER	AL
BEGIN	BG
COMMENT	CM
CONTINUE	CN
CUT	CT
DELETE	DL
DISPLAY	DS
DIVIDE	1
EXCHANGE	XC
EXCHANGE ALL	XA
FILE	FL
FIX	FX
FORGET	FG
GET	GT
GOTO	GO
IF	IF
IFREF	IR
INPUT	IN
SINUT	SN
IOIN	LN
LABEL	LB
LIST FILES	LF
LIST NOUNS	LN
LIST REFS	LR
LIST UNDEF	LU
LIST VERBS	LV
MOVE	MV
MULTIPLY	$*$
OUTPUT	OT
PRINT	PR
RECAP	RC
RECAPALL	RA
RENAME	RN
REPEAT	RP
SAVE	SV
SPLIT	SPART
STATUS	ST
SUBTRACT	-
TRACE	TR
VERB	VB

Table 1 Standard Nouns and Verbs
BIG CHARS
BREAK AT (asterisk, hyphen, etc)
CENTER
CLEAR SCREEN
CONVERT TO WORDS
CURSOR (up, down, etc)
ENTER A Y OR N
PAD (leading zeros, trailing spaces)
REMOVE LEADING ZEROS
ROUND TO (n decimals, etc)
SLOW DOWN SCREEN
Fig.3. Examples of Standard Utilities. A utility is just a verb that is useful in a number of contexts. Most users will define a few for their own particular situations, but Standard Utilities, like those illustrated above, are shared because they are seen to interest several users. This selection came from a list of 219.

ADAM has been taught the ACCOUNTS RECEIVABLE with INVENTORY CONTROL model so that he can learn your job a little faster -- like a trade school graduate. He, by no means, knows all there is to know about Accounts Receivable with Inventory Control. But he has been taught the basics. Now you will need to train him in the specifics about

ADAM REVIEW

your Accounts Receivable and Inventory Control.
Let us begin with an overview of the things ADAM knows about Accounts Receivable and Inventory from his basic training.

1. ADD NEW CUSTOMERS to his Accounts Receivable

When you sell something to a new customer, one of the first things that must be done is to inform the Accounts Receivable Clerk. The Accounts Receivable Clerk will need to know such things as the customer's name, address, city, state, zip code, and the customer number assigned to them.

There are other things which your Accounts Receivable Clerk might want, but which you will need to teach ADAM. Examples would be "ship to" information for customer name, address, city, state, and zip code; customer telephone number, accounting contact person, credit limit, whether or not the customer accepts back-orders, etc.

Also, when your company sells to a new customer, their account balance will be zero, and there will be no open invoices for this new customer.

Should your business require it, you may need to teach ADAM about such things as date of last payment, last payment amount, a payment code to indicate if the customer pays on time, a little slow, very slow, etc.; discount terms, and so forth.
Fig.4. Part of the supplier's description of a skeletal model.

Accounts Receivable with Inventory Control

- Add new customers
- Customer record maintenance
- Add new inventory item
- Inventory item maintenance
- Enter invoicing information
- Print invoices
- Print sales journal
- Customer payment journal
- Aged analysis (of trade debts)
- Print customer statements
- Delinquency notices (reminders of unpaid bills)

Accounts Payable

- Add new vendors (= suppliers)
- Vendor record maintenance
- Post vendor invoices (= enter purchase ledger)
- Print invoice input list (= purchase day book)
- Print cash requirements (based on invoice data)
- Print vendor cheques
- Vendor cheque register (= purchases cash book)

Payroll (9 elements)
General Ledger (8 elements)
Figure 5. Skeletal Models for users

Figure 6. Example of Output from a Skeletal Model
Central Processor - 16 bit, 170 nanosecond cycle time, built up from Intel 3002 bipolar 2-bit slices.
Memory Processor - 32 K bytes plus optional 32 K bytes extra. All memory is used or controlled by the operating system; the user effectively works from the disc.
Control memory - 51232 -bit words.
Registers - 10 16-bit control registers
16 16-bit general purpose registers.
Input/Output controllers - None required. The fast CPU has time available to emulate the $1 / O$ controller functions and is directly connected to all I / O devices.
Disc drive - Control Data model 9472 H with one fixed and one removable disc, each of 5.3 megabyte capacity. Data transfer rate 1.25 megabytes per second.
Data code - ASCII
Table 2. Some vital statistics. The manufacturers do not disclose this sort of information directly (arguing that their kind of user cannot use it and should not want it). The details above have been gleaned from a report published by Datapro.

The solution to the format problem may not be as easy as you thought but Trevor Lusty gives his version along with a set of simple problems.

TThe first solution (Figure 1) shows a program suitable for a shopkeeper offering variable discounts on certain items. For each value P, read from a DATA statement, $7 \%, 11 \%$ and 13% discounts are calculated and the results are then tabulated.

The program works by converting each of the discounts from numeric to string constants in lines 240 to 260. The first .5 in each of these lines is used to round the discount to the nearest number of pence, the second is present to ensure that trailing zeros are printed.
Example :- 7\% discount on $£ 15-60$ means you pay 93% of this amount.
in line 240
in line 270
in line 300
X\$ $=$ STRS ((INT $(15.6 * 93+.5) / 100)$
$=$ STR\$ $\{($ INT $(1450.8+.5)+.5) / 100)$
$=\operatorname{STR} \$((1451+.5) / 100)$
$=$ "b14.515" where b indicates the blank space reserved for the sign if the number is negative.
$\mathrm{X} 1=\operatorname{LEN}(\mathrm{XS})-1$
$=7-1=6$ note that the length of the string includes the space and the position for the decimal point.
"b14.51" is printed starting in column 14.

Solution Two

The first solution is perfect for a dedicated program but would require rewriting for any subsequent programs. A better solution may be achieved by using a subroutine. This may then be incorporated into any new program without alteration. To be as general as possible the subroutine should handle words as well as numbers and the solution given (Figure 2) does this.

The subroutine has line numbers from 9000 to 9960 and these line numbers should be avoided in your program. Lines 1000 to 1200 show how the subroutine may be called. The required format for the print statement is set up in the string variable $\mathrm{F} \$$, with ${ }^{*}$'s in the places where the numbers will be. The numbers to be printed are put into array N; if there are more than ten numbers to be printed in any one line then N must be suitably dimensioned.

Variables used in the subroutine must not be used in the main program, and for this reason all simple variables used end with a 9. (A9, B9 etc.) Apart from these, the only variables to be avoided are the string variables $N \$$ and $F \$$ and the array variable N.

The subroutine is useful if your BASIC does not have a PRINT USING statement. However, when using the subroutine, there is a small penalty to pay in processing time. The format F\$ need not be set up every time the subroutine is called but only requires altering when the desired layout changes.

A Pot Pourri Of Problems

The last couple of months' problems have been fairly long so, by way of a change, here's a selection of short problems for you to try.

Square And Add - 1
If you square the four digit number 7,777 you get the eight digit number $60,481,729$. If you split this number into the two four digit numbers 6048 and 1729 , and add them together, you get $6048+1729=7777$. How many other four digit numbers can you find with this property?

Square And Add - 2
Now, providing your computer works with eight or nine digit arithmetic, you should have had little difficulty with the last problem, so let's extend it. The six digit number 356,643 has the square $127,194,229,449$ and $127194+229449=$ 356643. How many other six digit numbers with this property can you find?

Powerful Digits

If you take the digits of the three digit number 371 , raise each of them to the third power and add the results, you get back to 371 .

$$
3^{3}+7^{3}+1^{3}=27+343+1=371
$$

How many other three digit numbers can you find with this property?

How many five digit numbers can you find which are the sum of their digits raised to the fifth power?

Fig.1a. The program listing for a typical use of the format solution.

PROBLEM PAGE

RIGHT PRICE ＝＝＝＝ニ		$\begin{aligned} & 11 \% \\ & 1 I S 0, \\ & ===== \end{aligned}$	$\begin{aligned} & 13 \% \\ & \text { DISC. } \\ & =====0 \end{aligned}$
149．09	9\％．00	89.015	87.69
15.69	14.51	13.88	13.57
190.00	176.79	169.19	165.30
1800.09	936.60	839．805	870.040
123.50	114.36	105.92	107.45

Fig．1b．A set of results produced by the program．

```
Ma&& LE* :\\13=-123.456
M,
1120 LET FS#"TME ROHTINE WLLL PRINT MITH **** OR MITKDTT *** THE SIGN"
112E LET FS#"FME ROTTINE WLLL PRINT MITH **** OR IITNDTTT *** THE SIGN"
|68 LET FSE"IF YOU DO :20* NLLO% ENOTSH SPACE *** PRINTS AS ***
118C GOETH 92EC
12M0 END
mece remm
```



```
924A REM * SUCRDUTINE TO FOPMAT OVTTPUT:*
MR6C REM * RML 9K DISC EASIC VEM 3.08B:
9:20 AEM - TREVOR LUETY 28TH OCT 79* *
)AR pEM.
9162 鿕 ********************************
```



```
२20, 
O24z %F PG|ID|(FS)-1 THEV PRI:AT:REP!-qN
724% IF PG#1gu(FS),1 THEV PRI:AT:RET!
g260 iF MIDI(FSAPG:1)="*"* THEN 9362
Mag2 {F HI二S(FS*PG&2)=***** THEN 9360
3RE &F M{DS(F3,P9,2)="*=" THEN 9340
```



```
7348 S9*3:40-9 7238
```

THE FOPMAT MAY COMTAIN WORDS AND NUMEERS－ 123.450
TKE ROTFINE ROMDS－ 123.456 T0－ 123.46 THE POTTTINE UILL RR3HT UITH－ 123 OR UITHOTT 123 THE SIGN 1F YOH DD NOT ALLOW ENOMGH SPACE 123 PRINTS AS＊＊
PEATH

Fig．2．The formatting subroutine that can handle both alpha and numeric characters．The workings are explained in the text．

STAR DEVICES LIMITED

P．O．BOX 21 UNIT 1
 MHLL LANE，NEWBURY BERKSHITE

 UNITED KINGDOM
Tel．0835－40405

This professional quality touch sensitive keyboard touch sensitive keyboard has the full ASCII code se of characters savailable from the main keyboard，plus a separate 12 kay pad to allow fast numeric entry．The Mk Ilt has a bleep facility with volume control and power on light plus a po＇yester sealed wipe dean surface making the unit particularly suitable for uss in hostile enviranments．The Mk AlI is supplied complete with mat－ ing gold plated edge connec－ ing gold plated edge cornec－ cor in a low profthe matt grey

STANOARD FEATURES
＊Operates from single +5
± 0.25 Volt supply
＊industry standard pad spac－ ing $\mathrm{t} \mathrm{c}^{*}$
＊Electronic pad hysteresis ＊ 2 key follover

STAR DEVICES
More Than a Touch Better

Full ASCII Encoded Touch Keyboard

Positive light touch
keys－two user definable

Patents pending
Mark III

Dimensions $14.4 \times 8 \times 1.2$ inches， $365 \times 203 \times 31 \mathrm{~mm}$

TYPE 980－16 S．P．S．T．IForm A）Switches TYPE 981 －One common with 16 connections TYPE $982-4 \times 4$ Switch Matrix	E7．20 68.70 c6．70	7	8	9	
Contact Rating－ 24 Volts at 50 mA Max． Contact Bounce－Less than 1 mS ．Typicatly． Operating Life－Typically greater than 2 million operations per pad．					
			2		
			F	E	

STAR DEVICES use a proved fully sealed－high technology－flexible membrane key switch requiring a light activation pressure．All character printing is done on the back surfacg thereby ensuring the unit stays looking good even after many millions of operations－simply wipes clean with damp cloth．
Dimensions
$4 \times 3.5 \times 0.125$ inches
Fixing centres
3.2 inches 81.3 mm
$101.6 \times 82.9 \times 3.2 \mathrm{~mm}$
＊CUSTOM KEYBOARD DESIGN \＆MANUFACTURING SERVICE CONTACT US FOR DETAILS＊
＊ 7 bit paralled ASCII encoded putput with positive and negative strobes ＊Operating life typically greater than five million operations per pad ＊SHIFT LOCK PAD－Iluminating and electronically latched－reset by the operation of either SHIFT pad．
＊Repear pad．

The unique Mk Il keyboard
with a derdicated pad for each
ASCIF character is available
at E42．50
FULL DATE SHEET
ON REOUEST

DESIGNED AND MANUFACTURED IN THE UNITEO KINGDOM

UK \＆Overseas Trade anquiries welcomed

The Mk Ill is stocked by： Newbear Computing Store－ Newbury 30505 Transam Components Ltd．－London NW1．01－4028137 Cavern Electronics Milton Keynes 314925 Henrys Radio London W2 01－723－1008

T
Tejetypewriter（TTY） 102 character alphabeticat upper－case－only link selectable by user ．．．．．．． 10
U Tri－state outputs on all data bits by use
44
－Open Collector outputs on all data bits ． 4 Various other options and modifications are possible with this keyboard．Contact STAR DEVICES for lurther details．
NOTE：I With option A and／or C the Baud Rate may be externally supplied by the user．
NOTE 2：With option A and the +12 volts at $10 \mathrm{~m} A$ may
be externally supplied by the user

Please Supply the following：

MK III KEYBOARD．
 ．Quantity．KEYPAD TYPE．
 ．Quantity

Please circle Options required with your keyboard

A A1（Specify Baud Rate）．
A2 CDETUV

CHEOUE／PO Enclosed for E ．．．．．．．．．．．．Make payable to STAR DEVICES LTD ACCESS／BARCLAYCARD／MASTERCHARGE／EUROCARD／TRUSTCARD／VISA

CARD No

Expiry Date
NAME
ADDRESS．
BLOCK
CAPITAL
PIEASE
PLEASE
\mid Tel：
Allow 7.10 days for delivery
POST G PACKING（including insurance）Keypad prices in brackets UK £ $\uparrow .50(40 \mathrm{p})$ ，EUROPE $£ 3.00^{*}(90 \mathrm{p})$ ．OUTSIDE EUROPE $£ 5.00^{*}(\mathrm{f} 1,50)$ ． ．This includes airmail delivery．＊UK ORDERS ADD 15% V．A．T．
PAYMENT SHOULD BE MADE IN STERLING DRAWN ON A UK BANK OR IMO Mk III Handbook is available for $£ 1.00$（inc．P\＆P）．Ref undable on purchase．

The Perfect Lead... Acorn Microcomputer System 1

Price $£ 65$ plus VAT in kit form
This compact stand-alone microcomputer is based on standard Eurocard modules, and employs the highly popular 6502 MPU (as used in APPLE, PET, KIM, etc). Throughout, the design philosophy has been to provide full expandability, versatility and economy.

Specification

The Acorn consists of two single Eurocards.

1. MPU card

6502 microprocessor
512×8 ACORN monitor $1 \mathrm{~K} \times 8$ RAM
16-way I/O with 128 bytes of RAM
1 MHz crystal
5 V regulator, sockets for 2K EPROM and second RAM I/O chip.
2. Keyboard card 25 click-keys (16 hex, 9 control)
8 digit, 7 segment display CUTS standard crystal controlled tape interface circuitry.
Keyboard instructions:
Memory Inspect/Change (remembers last address used)
Stepping up through memory
Stepping down through memory

Set or clear break point Restore from break Load from tape
Store on tape
Go (recalls last address used)
Reset
Monitor features
System program
Set of sub-routines for use in programming Powerful de-bugging facility displays all internal registers Tape load and store routines

Applications

As a self teaching tool for beginners to computing. As a low cost 6502 development system for industry. As a basis for a powerful microcomputer in its expanded form.
As a control system for electronics engineers.
As a data acquisition system for laboratories.

START WITH SYSTEM 1 AND CONTINUE AS AND WHEN YOU LIKE

Acorn Controller £35 plus VAT (min config.)

Acorn Memory 8 k £95 plus VAT (kit form)

Acorn VDU £88 plus VAT (kit form)

Acorn Software in ROM

Acorn Computers Ltd.
4A Market Hill, Cambridge, Cambs.
Cambridge (0223) 312772 .
the CPU card of System 1, it allows for up to $41 / 2 k$ EPROM, $11 / 4 \mathrm{k}$ RAM and $32 \mathrm{I} / \mathrm{O}$ lines. It has on board 5 V regulator and optional crystal control. Custom programs may be developed on System 1 and the card makes an ideal dedicated hardware module.

A fully buffered memory card allowing up to 8 k RAM plus 8 k EPROM on one eurocard, in an Acorn system both BASIC and DOS may be contained in this module. Static RAM (2114) is used and the card may be wired into other systems.

A memory mapped seven colour VDU interface with adjustable screen format. Full upper and lower ascii and teletext graphics are features of this module which along with programmable cursor, light pen, hardware scroll etc., make this the most advanced interface in its class.

Acorn BASIC - a very fast integer BASIC in 4 k
Acorn COS - a sophisticated cassette operating system with load and save and keyboard and VDU routines in 2 k
Acorn DOS - a comprehensive disc operating system in 4 k

Post and packing free on all orders.
I enclose a cheque for $£ \ldots$. . .
(indicate total amount) made out to Acorn Computers Ltd.
Please send me further details of this and other Acorn options
Name
Address

Alationios tontay

CIRCUIT SUPPLEMENT

Next months ETI carries something really special - a SIXTEEN PAGE circuit supplement for the experimenter. All the circuits have been tried and tested by us, making this the most reliable reference yet. If there is anything you need a circuit for or any circuits you need something for this is the place to find it. No less than 50 in all. Half a hundred of the best you'll find anywhere.

Well worth keeping for that inevitable future time when you'll NEED ONE or more of the priceless little gems lying amid these pages.

THE FALL OF ROME: A Program Suite

This program set simulates one of the more violent episodes in early Terran expansion; that of the sacking of the planet Rome. Some historians cite this as the incident which finally brought the 'Coprosperity Sphere' into a state of cohesion and thus allowed economic growith to take place on hitherto impossible scale.

Rome itself lay outside the loose trade empire which existed at that time and had no reciprical defense agreements at all, save that unilaterally granted to all colony worlds by Earth itself. Due to the relative positons of Rome, Earth and the Travel Points, transit time between the planets was close to 100 hours despite the relative (27 light years) proximity.

Help from home was thus destined to be a little late in arriving. New worlds were in no position to offer assistance in any event, tending to husband any forces they possessed in close orbit to be committed ... uselessly . in small numbers later. The idea of a united fleet had met with indecisive suspicion many times in the preceeding years.

First Signs

The approach of the alien fleet was noted by deep space radar operators throughout the sector. On Rome itself the rooms containing the equipment filled rapidly with the news of unknown ships pouring out of the Points. in apparently large numbers.

The angle of exit from the Travel Point indicated that the craft had entered hyper-space outside known space and were thus alien in nature. Outsiders had arrived at last.

The fleet did not form up into any sort of order that was detectable to the watching Romans, the 'Outties' -. as the news media came to christen them - simply massed the ships together and came on, straight at Rome.

First contact was made by a 'ship-of-the-line', one of Rome's four first class warships. The contact was short and to the point. As soon as the ship 'Claudius' drew close the Outties blew it to pieces.

At that point the faction who had argued for negotiation began to lose a little credibility and defences were readied.

Outtie Invasion

Program Notes

Because our line printer can't handle graphics the following points should be borne in mind when loading or modifying this program. The ships are generated with the following graphics; Shortrange - REV SHIFT), REV SHIFT W, REV SHIFT , CURSOR DOWN, 3 CURSOR LEFT, SHIFT 5, SPACE, SHIFT 6 Longrange - REV SHIFT), REV SHIFT [, REV SHIFT , CURSOR DOWN, 3 CURSOR LEFT, SHIFTM, ASTERISK, SHIFT N. The defender is generated with a reverse V character. The codes are PRINTED not POKED for the Outties so the PEEK codes are needed to check for hits or near misses.

Some of the text is printed in reverse field, this occurs in lines 250, 330, 340 and can be identified by the 2 after the last text character. Code 3 at the beginning of a text string indicates clear screen. A variable list is printed at the end of the listing for general deciphering of the program.

RESOY.
180 PRIT "J":PRINT": DO YOU NEDD INGTRUCTIOKS, Y OR N?
118 GT As:IF Rs="" Tiev 110
$128 \mathrm{IF} \mathrm{R} 8=\mathrm{NN}^{2}$ TeN 378
138 PRINT" Y YOU PRE THE SUEE DEFENCE OF ROE
149 PRIMT
150 PRINT" YOR SHIP IS THE "N2' at The TOP
168 PRINT" of YOR UEWSCREEN": PRINT
$17 P$ PRIMT" YOR TRGK 15 TO DESTROY AS MANY CF TIE
130 PRINT" AITIE'S SHPS PS POSSIRE, OR ELF!
190 PRINTPPPINT THEY CIE IN TWO SITES, AS SHON.

220 FRINT:PQINT" THEY MOUE UP FROW THE BOTTOM OF YUF
232 PRINT' SCREEN PNO YOU USE TTE 'SACE' KEY
248 PRINT" TO LSANCH YUR LOEER BQT.
258 PRITT:PRINT:PPINT:PPINT" HIT AN KEY TO CONTIME2
268 GETAS:IFAS=" THEN 268

SM PRINT" UILL NOT DESTRON TH AITIE.
290 FRTIT:APRITT" YOU CAN CANE TE DIRECTION THAT YOU
WX POTIT" FPE MOUTNG IN UTTH THE 'R' KEV.
ZIC PRIIT:PRPIT" FPGEER THAT THE CUITIES SFEED LP
Z2R FPINT" THE MOEE YOU GMOT THEM DON कR
SZe PPINT" IWEA TEY FIFE THE IEEEF2 M!SS!
ZAE PRINT:PPINT" HIT PNI IEY TO PLRM2
SE GETR:IF A5:" THEN 3 SK
320 GOTO 30
370 PEN SET LP UARTHELES

39 RES CLS AO 24 CAPSXP CONG
40 FRNT"EDSS"
$410 x=32769: M=1: T=66$
42 IF :32769THEN $=1$
$45 \mathrm{IF} \times 322067$ Hem $=-1$
440 FEY CIECK FOR DIRECTION KEY
459IFPS="P"T1E1476
450 cotrow

43 M M $M=1$

520 Iff=emensso
533 [FFF=17TENCOSE630

50 PRINTTF (R)") u=25 $6^{\circ}:$ GOTCES

Gex GETFI
610 IFRA $=$ " "neff $=1: F=2 \times 49:$ COSLBK*
620 COTO 2 L
G2e 1 FRI $=1$ CMIE $E=1$ TEM1220

E92. CCRR:IFAS="R"THE668
668 cutorex
670 IRE:THM=-1:CMOTNE
绝 $\mathrm{N}=1$

720 REM NEF MISS?
730 IFPEEK (F) < $\ 23$ STHEN 88
740 POKEF-40, $33:$ POKEF-41, T7: POKEF-1,68

$768 \mathrm{D}=1: \mathrm{RI}=1: F=5-1: G 010820$
77 FOKEF- 20.32
T30 IFPEEK(F) <>22STHER28
TMe FOKEF-40, 33 : POKEF-39, 78 : POKEF $+1,68$
598 FORC=OTCPB: NE:T: POKEF-48, $32:$ POKEF-39,32:POKE $+1,32$
$8180=1: L E=1: F 5=1$
328 IFF $/ 337287$ EFF $=0: D=8:$ PI $=0: \angle E=0: P O K E-48,32:$ PETUFN
830 IFR=1THENETMN
340 POKF, 43 : PCOFF-49,93: POKEF-89,32
350 RETUPN
S6O PEM DEETRON OUTIE ROUTIE
870 FOKE-40, 32: POKEF-80. 32
SSCROR $Q=0 \mathrm{OO}$
89 POKF- 1,43 : POKEF $+49,31:$ POKEF $+1,127$
F90 POKF, 24: $\mathrm{POKFF}+39,9$ 9: PO KFF $+41,182$
910 POKFF-1,102: POFFF $+40,99:$ POKFF $+1,224$
928 POKF , 150: POKEF $+39,43$:POKEF $+41,255$
530 POEFF-1,32: POEF +40, $32:$ POKEF $+1,32$
348 POKF , $32:$ POKEF $+39,32$ POKE $+41,32$
958 NETQ:FF=8
968 IFF $=-48 \mathrm{HE}$ KJ 999
$370 D=9: R I=8: L E=0:$ PETIRN
958 PEM DESTRO DEFENEP POUTIIE
$390 \mathrm{~K}=\mathrm{X}+289$
1080 IFPEEK $(K)=1507$ HEM1ESB
1010 POEX. 224: POEE +48.32
$1028 \mathrm{~K}=\mathrm{k}-48:$ GOTOLCO8
1000 POEK $+40,32$
1948 FOR $U=1$ T028:POUEX, 211:FORO=1TO18: NEXTO

1068 REI ED TME PPINTOUT
1030 PFINT" $3: \quad Y$ YU DESTRMED"H'OF THE RLIES"
100 REM KEVGAFPD TRPF
1058 FOR $Q=1 T 018:$ CITAS:NETT
1100 IFHR H HTHACH:PRINT:PRINT" IT IS THE BEST SCORE 50 FPR":GOTO1128
1110 PRINT:PQINT" THE REST SCOPE IS"HR
1120 PRINT: PRINT" TO PLRY ACRIN PUSH PAN MEY"
1138 PRINT:PRINT" FTIER 38 SECONOS I YILL FUT DOW"
1149 Tis="6ccecse"
1158 IFI $s=" 689030^{n}$ THEN END

1160 LTAS: IFRF=" "THENI 158
1170 PGI PEEET URRIPQES THEN PESTRRT
$1139 \mathrm{~J}=50: H=8: D=8: P I=9: L E=0:$ COTOS80
1199 PEY PEPGND BOT ROUTINES
$1206 \mathrm{FE}=17 \mathrm{EN}=41: \mathrm{GO} 01220$
$1210 \mathrm{~K}=39$

1230 IFPEK(F) ()327HEPOKF-K, $32: 1 \mathrm{H}=1+1: G 0 T 01258$
1249 POKEF, 46: POKEF-K, 32: PETMPN
$1250 \operatorname{IFPEX}(F+1)=2150$ PPEEK $(F+1)=2197+F F=5+1: 6010878$
1269 IFPEEK $(F)=2150$ PPEEK $(F)=2197108870$

1229 IFPEEK $(F-41)=2150$ CPEER $(F-41)=2197 \mathrm{FEF}=F-41:$ GOTOB78
1290 IFPEEK $(F-39)=2150$ PPEE $(F-39)=2191+2 F=F-39: G 0 T 0878$
$1300 \operatorname{IFPEK}(F+41)=2150$ P9gex ($F+41$) $=2197-F F=741: 6070878$
1310 ROM URRIFRE LIST
1328 POM AS IS KEYBOFPD PESPONGE
$150 \mathrm{PBA} X$ IS POSITION OF DEFEDEP:
1340 PEN R IS POSITION OF OUTIIE
ISEO NOM M IS DIRECTION MFGAER
1368 REA FF IS FIRE MPDKER
1370 REY F IS THE BOT POSITION
1330 PG K IS THE OUTIE BLLT POSITION
1390 PGO RI IS THE RIGT PEBONO MPPUE?
7460 MBM LE IS THE LEF REROND MFPGRR
1410 KEM H IS TE HIT CONRTE?
1420 REM H2 IS THE HIGEST SCOPE
perv\%.

Historically some 341 battle craft got through and began to form up to attack the planet itself. Each of the orbital stations thus had an impossible job, faced by the ranks of approaching alien invaders. They fought well but still not well enough to prevent a sizable force reaching the surface.

Most of the attackers simply went around the forts, dispatching hordes of small robot hunters to wreak what havoc they could and passing on.

The battle of the orbital forts was one with no real victors
........ .

Instructions:

To move laser base left or right use left or right square brackets, to fire press the 'ESC' key. Only one key can be read at a time so these actions must be independant. The idea of the game is that there are 54 Invaders out to get you - for each one you hit you score 10 points. You, however, only have three laser bases so be careful!

If you shoot down a whole frame of Invaders they reform closer to you, just to make things difficult. If, alas, you are shot to pieces and have no more bases left then just press ' G ' and start all over again.

Variables Used

17CE Laser number
17CF Number of Invaders left
17D0 Display loop number
17D1 Displacement of Invaders
17D3 Move direction
17D4 Invader fire in progress
17D5 Keyboard byte
$1706 \quad$ Laser fire in progress
17D8 Laser fire address
17DB Invader fire address
17DD Displacement of new frame
18E0 Size of frame
1842 Last Invader to fire
That's it, Good Luck!

SPACE WAR!

nimax

Abstract

 1640 CD CO $17 \mathrm{CD} 4318 \mathrm{CD} \quad \mathrm{D} 2 \quad 18 \mathrm{CD}$ A6 17 CD AO 16 CD 1659 D9 1A CD B6 18 CD 51 LA CD $56 \quad 17 \mathrm{CS}$ 2A DD 17 7D $\begin{array}{lllllllllllllllll}1680 & 36 & 36 & 23 & 36 & 36 & 33 & 33 & 21 & \mathrm{D} 2 & 17 & \mathrm{C} 3 & 13 & 16 & \mathrm{CD} & 72 & 1 \mathrm{~A}\end{array}$ 1690 C3 4016 FE 7A C2 9A 1636 7F FE $7 F$ CE $3620 \mathrm{C9}$ 1600 C3 Fi 169000 TE FE 20 CA F1 16 17： $1790216 F 1 F 77 \quad 2377 \quad 23 \quad 77 \quad$ C9 $77 \quad 23 \quad 77$ CS AF $1 F 77$ 18 C IF O1 900 CS FE DD CA 0019 FE DB CA 1519 FE 190021 FE $1 F 11$ FD IF 86 3E 1AFE 20 CO 1A 77 1B 2B

 1968 FE LC C2 6819 7D FE 4B DA $78 \quad 19$ TE FE 28 C2 日®
 198E FE 71 CA 83 1AFE CO CA 83 LA FE 72 CA 日 3 1A FE 1990 7A CA 9A 18 FE TF CA AO 18 FE IF CA 72 LA 00 DB

 IAFB $\begin{array}{llllllllllllllll}56 & 45 & 52 & 20 & 43 & 41 & 50 & 54 & 27 & 20 & 4 C & 41 & 53 & 45 & 52 & 04\end{array}$

 1B48 1B C9 16 3A D4 17 FE OD CE 2A DA 17 EB 21 日0 1C
 1868 9E 1日 1A FE CO C2 5日 1日 85 CZ 5 E 1日 13 2B 7D B4 1B7日 CA SE 1B 1A FE CO C2 $6 C$ 1B BC D5 7B C5 $49 \quad \mathrm{DZ}$ B2 1880 IB 145 FF 1A FE 20 CA 8 D 1B If C3 EC 1B EB 36 1F

 1 BE CO 71202072 CB 71202072 CD 71204202020

 1 C 4020
FUNCTION？P O JERCGA DUHLFTSIOWMUXNZK

Above：Space Invaders hex dump．

Planet In Ruins

Rome had one planetary moon，appropriately named Sicily， which was on the far side of the world when the attack reached the surface of Rome，there was one armed moon－ base sited there，with only a small staff and a meagre arma－ ment．

The base Commander did what he could－his survey ships sowed a huge minefield across the space between Rome and the Travel Points．Closing the stable door it may have been，but the demolition charges took out more enemy ships than the rest of the defences between them．

Rome itself was destroyed utteriy．Clouds of ash drifted across the surface and the mean temperature had risen to $200^{\circ} \mathrm{F}$（a local temperature scale）across the main landmasses．About 50% of the surface water had been vapourised into the upper atmosphere，and once the temper－
ature fell sufficiently there came about a storm such had never raged across the planet since its creation．

By that time though the Outsider fleet had long gone －and run straight into Moonbase＇s minefield．Deploying for battle，they only succeeded in englobing the explosive devices thereby catching more of the blast from each as they went off．Their tactics were well nigh suicidal，suggesting that they were unused to dealing with this type of attack．

The remainder of their force moved off \qquad or so Moonbase believed．Some hours later alarms clanged a warn－ ing through the corridors andthe last remaining human out－ post in the system was fighting for its life against a squadron of small fast alien attackers．

Seconds after the attack began，fire of the twenty assault craft had been brought down，but at the cost of all but one of the base＇s cannon ．．．．．．．．．

Moonbase Alert

It is essentially an application of the PEEK \＆POKE Func－ tions to produce an interactive game whereby you are able to fire a gun at flying spacecraft．Scoring is incorporated to provide some competitiveness．

Points to note within the program are as follows：－
（a）The clear screen instructions have been printed out as，
＂ 3 ＂and two cursor up instructions as＂ 11 ＂．
（b）Lines 280－400 Generate Moon Surface and Base．
c）Lines 410－470 Generate Star background．
d）Lines 520－570 Determines Flight Path of ship．
e）Lines 580－630 Pokes ship on screen．
（f）Line 680 Peeks next position of shell so following lines prints a shell or if ship is hit，prints explosion．
（g）Line 760 The present rate of Poking on and off the screen is about right but this line could be used to slow the game down to any desired speed．
（h）Lines 770－820 Pokes the ship and shell off．
（i）Line 850 Strikes the ship off the screen if hit．
If the game is to be run on a different machine some of the lines will have to be modified to suit the revised formatting but the principle remains the same．

： 28 ra ：

İ FFIHTCFC：13：＂－－
ISU FF＇INT＂MCIUUEASE IS UNUER ATTACK FRGMALIEIS＂：PRINT 1E．0 PRINT＂IURLEFES！YOU HAUE OHLV ONE LRSER＂：PRINT 1．19 PRINT＂CAINHON TO DEFEND THE BASE FIND THERE＂：PRINT
13G FFINT＂ARE OHL＇＇ 15 SHOTS REMAINIHG＂：PRINT
：GG PFINT＂．．．\＆EV 1 TO FIPE．．．＂：PRINT
zaG FFINT＂IF YOU HIT TEN SHIPS BEFORE＂：PRINT
216 PRINT＂RURUNING OUT OF AMMO THE ATTRCK＂：PRINT
Zこ，FRINT＂HAS BEEN［，EFEATED＂：PRINT
2．0 PFIHT：FFOINT
－4e PRINT＂．．．KEV 2 TO START．．．．＂
251 IET $A:$ IF $R=0$ THEN 2561
こE ON A GOTO27Q， 296
27e PRINT＂З＂：GOTO 246
280 REM＊＊＊MCION SURFFCE RIND BFASE＊＊＊
290 PRINT＂J゙
30ध POKE $32768+(40: 20)+34,77$
J10 PGKE $32763+(48+21)+35,160$
उ20 FOR $X=1$ TO J
3J0 PQKE $32768+(40 * 22)+33+x, 160$
346 NEXT X
$\begin{aligned} & 346 \text { NEXT } Y \\ & 350 R\end{aligned}=1$ TO 5
36 POKE $32768+(40 * 23)+32+\psi, 160$
JTE NEXT Y
380 FOR $z=1$ TO 38
390 POKE $32768+(40 * 24)+Z, 102$
4en NEXT Z
416 REM＊＊＊BACKGROUND STARS＊＊＊
420 DATA $45,234,252,320,389,474,577,632,641,707,727,735$
430 FOR $X=6$ TO 11
440 READ A
456 PCIK＇E $32763+$ A， 43
460 NEXT X
470 FOR $A=1$ TO 1000：NEXT A
$486 \mathrm{~T}=\mathrm{G}: \mathrm{M}=9:$ REM $* *$ TOTRLS SHOTS RND HITS＊＊＊
$496 \mathrm{~N}=0: \mathrm{S}=0:$ REM＊＊＊SHELL HEIGHT RND SH！PS＊＊＊
$50155=$＂SHOTS $="$
510 HI＝＂HITS＝＂
529 REM＊＊＊HEIGHT OF SHIP＊＊＊
$530 \mathrm{D}=1 \mathrm{NT}(18+\mathrm{RND}(1)+.5): \mathrm{N}=0: \mathrm{U}=8$
$540 \quad 5=5+1$
550 IF $D>=7$ THEN $C=4:$ GOTO 538
560 IF $D<=3$ THEN $C=7: G O T O ~ 530$
570 IF $3<D<7$ THEN $C=13: G O T O$ ESE
580 FOR $x=0$ TO 35
590 POKE $32768+(48 * C)+X, 85$
600 POKE $32763+(40 * C)+x+1,68$
610 POKE $32768+(40 * C)+x+2,87$
620 POKE $32768+(40 * \mathrm{C})+x+3,62$
63 POKE $32768+(40 * C)+x+4,73$
640 IF $N<>$ THEN 678
650 GET B：IF $B=0$ THEN GOTO 760
668 IF $B>0$ THEN $T=T+1:$ PRINTSPC（18）S\＄T：PRINT＂11＂
$679 \mathrm{~N}=\mathrm{N}+1$
680 LET $\phi=$ PEEK $(327.68+(40+(19-N))+53-N)$
690 IF W＝35 OR $W=60$ OR $U=87$ OR $U=62$ OR $U=73$ THEN 710
700 Goto 758
710 POKE $32768+(40 *(19-N))+33-N, 42$
$720 \mathrm{M}=\mathrm{M}+1$ ：PRIHTSPC（30）H\＄M：PRINT＂ 11 ＂
730 IF $M=10$ THEN GOTO 880
740 GOTO 760
750 P（iN： $32768+(40 *(19-N)\rangle+33-N, 46$
760 REM
770 POKE $32763+\langle 40 * C\rangle+X, 32$
780 POH：E $32768+\langle 40 * C\rangle+x+1,32$
790 POKE $32768+(40 * C)+x+2,32$
3GE POKE $32768+(40 * C)+x+3,32$
310 POKE $32768+(40 * C)+x+4,32$
820 POKE $32768+(40 *(19-N))+33-N, 32$
330 IF $\mathrm{N}=21$ THEN $\mathrm{N}=0$ ：GOTO 860
348
IF $T=15$ THEN GOTO 998
35e IF $\omega=85$ OR $\omega=58$ OR $\omega=87$ OR $\omega=62$ OR $\omega=73$ THEN 538
860 NEXT X
B70 GOTO 530
880 PRINT＂3＂：PRINT：PRINT
S90 FRINT＂CONGRATULRTIONS！！YOU HRUE SRUED＂：PRINT
30® PRINT＂MOONBRSE FROM THE RTTRCK！＂：PRINT：PRINT
310 PRINT＂THE COHFEDERRTION IS PRQUD OF YOU＂：PRINT
320 PRINT＂TVFE＇RUN＇IF YOU WISH TO PLAV＂：PRINT
330 PRINT＂RGRIN．＂：PRINT：PRINT
340 PRINT＂NUPMBER OF SHIPS THAT RTTRCKED $=$＂S
950 PRINT＂YOUR SCARE＇＂
360 PRIHTSPC（11）＂SHATS TAKEN $=$＂T
978 PRINTSPC（11）＂HITS MADE＝＂M
986 EHD
990 PRINT＂ड＂：PRUNT：PRINT
1080 PRINT＂YOU HRUE JUST RUN OUT OF AIIIIO！＂：PRINT 101母 PRINT＂THE MOOMBRSE HAS BEEN DESTROVED＂
1020 PRIHT：PRINT：PRINT＂TYPE＇RUN＇IF YOU WRNT TO TRY RGAIN＂
1030 PRINT
1048 PRINTSPC（11）5＂SHIPS RTTACKED＂：PRINT
1050 PRINT＂YOU HIT＂：M；＂WITH＂：Ts＂SHOTS＂
1068 END
REFTOV．

Aftermath

With the destruction of Moonbase, all human life had been eradicated from the system. It was six days before the 'help' from Earth arrived, a single Empire class dreadnought. Had it been present at Rome when the Outties attacked, it is possible that it could have stood off their fleet long enough to allow a greater firepower to be brought to bear.

Even this, though, is doubtful. the invaders used tactics and weapons totally alien to humanity and this lack of correlation cost the fleet dearly when they did catch up with the Outties in the Nexus system two years later. At that battle it cost four Empire ships and dezens of small corveties to buy the destruction of the Outtic force.

Since no contact was ever made with the aliens, we have no way of knowing where they came from, or even if the incident will remain an isolated one. Analysis of debris from their ships has given us only scraps of information, around which many theories have already been constructed. Simply we do not know enough to be able to say with confidence that the Outties will not re-appear, even now two hundred years later.

At the time the only good to come of the war was the forming of the Co-prosperity Sphere, with a united defence force and an overall command structure. Trade has prospered since and that elusive threatening shadow has served to keep mankind united.

Anyone who uses any computing language - including profane - should be camping in the newsagents waiting for next month's CT. Why? Well it includes

A full sixteen page program supplement, absolutely packed out with brand new brilliant readers software. Covering most of the systems around, these ideas and routines will keep your RAMs happily loaded for a long time, we think! And with 16 pages to choose from you won't be stuck for something to run next month.

16 PAGE SOFTSPOT SPECIAL

BUILDING UP A PROGRAM LIBRARY

Fed up with screen filling nonsense? Tired of computing all the prime numbers in existance? Shot down your last Death Star? Ready to begin making your micro work? Well if you are - and you should be, too many names will ruin your health - next month Computing Todays A.P.Stephenson tells us how to go about building up a useful program library. Womp rat fanatics - eat your hearts out.

It may be you can't be bothered with high level languages, or simply that machine code has always seemed simply inaccessable claptrap fit only for walking adding machines, not people.

Well Mr Malcolm (NASCOM) Bell has an idea that he can change all that. He thinks machine code programming is faster and more suited to some applications than BASIC and co. Next month we give the chance to prove it: May just have you typing in hex yet!

MACHINE CODE PROGRAMMING

PICO-BASIC
Micro systems deserve micro languages. You can't get much more micro than an MK 14 now can you? Next issue we have a fascinating look at a BASIC version especially for that machine. We think that you'll find its power quite surprising.

If you fancy a 16 K PET with goodies galore, a Nascom. Nano or Acorn - or even a keyboard then read with care. Any one of these could be yours by entering our birthday competition.

0ur birthday is a time of generous celebration and to help you enjoy yourselves as well we are offering some fantastic prices for a simple competition. No writing silly slogans or spending hours trying to write a program, just a straightforward crossword. The prices we are giving away are as follows:-
1st Prize16K PET with Petsoft Toolkit and $£ 300$ worth of Petsoft programs of your choice, not business packages.
2nd PrizeA Nascom 2.
3rd PrizeA Nanocomputer. 4th PrizeAn Acorn.
5th PrizeA Star Devices touch keyboard. All you have to do is solve the crossword!

CROSSWORD RULES
The squares of the crossword have been numbered in a conventional manner but only the clues for 1 across and 1 down have been indicated. Your first task is to solve all the clues and fit the answers into the appropriate squares. The second task is to find all the locations in the crossword where two answers cross, for example where 2 down and 7 across meet, and total the (decimal) value of the letters, A being equal to 1 and Z equal to 26. Then, put the completed crossword into an envelope, seal it and send it to us with your total written on the

1000+BIRTHDAZ COMPETITION

flap of the envelope. If you don't put the total on the envelope your entry will not be marked.

RULES

This competition is open to all UK and Northern Ireland readers of the magazine except employees of the magazine, their printers, distributors, employees of Commodore UK, Petsoft, Nascom Microcomputers, Midwich Computer Company, Acorn Computers, Star Devices or anyone associated with the competition.

All entries must be on the coupon cut from the magazine, photostats are not acceptable. As long as the correct coupon is used readers may submit as many entries as they wish.

Completed entries must be sent to Computing Today, 145 Charing Cross Road, London WC2H OEE and marked CT Competition. Entries not having the code number on the envelope flap will be discarded.

The prizes will be awarded to the first five correct entries drawn after the closing date. No correspondence will be entered into with regard to the results, it is a condition of entry that the judges decision is final.

All the winners will be notifed by post and the results will be published in a future issue of CT.

CLUES

An instructive African country in turmoil, (4)
Putting a penny in a confused leap will be fruitful. (5)
1A) Moves a toddler might make when programming? $(6,5)$
I In the workshop we tested a shopsoiled computer. (11)
| The options are many for this groovy item. (4)
1D) Indicative of the magnitude? (4)
Data rots in confusion if not put in order. (4)
Your forefinger can be used to trace this list. (5)
| The route a computer might take when it leaves. (4)
With this mode my primary objective is to communicate. (5) I was in front once, boredom resulted! (5)
| Send in panic resulting in a software termination. (5)
What an out of work processor looks for. $(1,3)$
A converted amphibian will produce food for a micro. $(1,2,1)$
| Wipe out your mistakes with a rubber. (5)
A singular arboreal data structure? (4)
Draw round a troubled crate. (5)
Planting one in a random statement may result in 12 across.
(4)

Language that sounds like it was meant for the shoe trade.(5)
Only one input can give a valid answer with this logic. (2-2)
Nothing mixed with an abbreviated Baronet can save the day if your program runs amok! (5)
On a Northerly heading we find a backward educational computer in shorts. (4)
Name
\qquad
Address

Thinking of buying a PET. Stop. Apple Prices down yet again. Compare these typical system prices.
32 K PET with dual disc, and printer
32 K APPLE printer, and with dual disc, 9 inch monitor,
printer, and interface card and cables

URES

APPLE
PET
Internal memory expandable to 48 K VES
NO Internal slots for interface cards, etc. YES (8) NO Switched mode power supply unit YES NO High resolution graphics $(53,760$ points)

YES NO
$\begin{array}{lll}\text { Language system including Pascal } & \text { YES } & \text { NO } \\ \text { Colour options } & \text { YES } & \text { NO }\end{array}$

We specialise in the design and manufacture of interface cards to suit customer's individual needs. E.G. APPLE may directly access instruments with B.C.D. outputs.

Special offer - Limited period only while stocks last Walters Dolphin BD80 printer. 112 char/sec. 80 col . Serial and parallel interfaces. Tractor fed. Bidirectional. Please note - this is the latest version with plastic noise reducing top cover.
£450
All prices exclude VAT

Tel. order welcome with Access and Barclaycard

Callers welcome

Now on Telex T!7268. 24 Hours Service

Happy Memories

21102 450ns 83p 16K Momory Upgrede Kita for TRS-80, Apple and

 $\begin{array}{llll}21102 & 250 \mathrm{ne} & 1.90 \\ 2114 & 450 \mathrm{n} & 4.26 & \text { Soroerer all ot } 942.50\end{array}$ $\begin{array}{lll}2114 & 450 \mathrm{ne} & 4.26 \\ 2114 & 260 \text { ne } & 4.75\end{array}$ $\begin{array}{llll}2114 & 260 \text { ns } & 4.7 & \text { Vero S } 100 \text { Producta: } \\ 4116 & 200 \mathrm{~ns} & 4.60 & \text { S Stor Card Frame with Powor Supply } \\ 4118 & 24.36\end{array}$ $\begin{array}{llllr}4118 & 20003 & 4.60 & 8 \text { SNor Card Frarne with Powsr Supply } & 241.36 \\ 4118 & 150 \mathrm{~ms} & 5.00 & \text { Prototyping Cards (3 types) esch } & 13.86\end{array}$ $2708 \quad 460 \mathrm{n}$ - 5.95 2718 450 ms 19.95 Extendar Cerd21.70

IC Socheres:		
Pins Solder	W/W	\$100 280 CPU Card 4Mrkz At

Pins	Solder	W/W	S100 280 CPU Card 4NHK AKT	176.81
8	$10 p$	$24 p$	S100 280 CPU Card 2MHt A\&T	150.94

$10 p$	$24 p$	S100 280 CRU Card 2Mit AkT	160.94
$11 p$	$36 p$	S100 280 CPU Card Bare Board	30.19
$12 p$	$39 p$	Si00 Video Dieplay Board AkT	125.06

48p S 100 Video Diapley Board Bare Board $\quad 21.66$
$\begin{array}{ll}58 p \\ \text { S } 10016 \times 2708 / 2716 \text { A\&T } & 73.31 \\ 61 p \\ S 10018 \times 2708 / 2716 \text { Bart Board } & 21.56\end{array}$
$\begin{array}{ll}61 p & \$ 10018 \times 2708 / 2716 \text { Bard Board } \\ 63 p & \$ 100 \text { Proto Bowrd (Plated Through) }\end{array} 21.56$
$\begin{array}{ll}63 \rho & \$ 100 \text { Proto } 8 \text { owrd (Plated Through) } \\ 70 p & \text { Set thecs's own edvertisement for full renge' }\end{array}$
VERBATIM Mint-disce (Pat, TRS-90, atc) 19.96

We stock e full range of Wire-Wrapping equipment and auppliee for you to chooee from; we heve shatves of books - give us ring with your requiremente and swoid crippling poetage charges. Our etocta are too numerous to list here - free price lists sent upon request.
The whop is open from 10 untit 6 Monday to Saturday and is worth it visit to cutch is eurplus bergain - Keyboards at 39.50 todry. we may hove some left When this gete to print? 18 wlot $\$ 100$ Mother Boards at 22.50 ? Double Eurocard prototyping boards for a pound.
ALL PRICES IHCLUDE VAT. POSTAGE FREE ON ORDERS OVER 10 POUNDS IN VALUE, OTHERWISE ADO 25p. ACCESS AND BAFCLAYCARD WELCOME, IN YALUE, OTHERWISE ADO 25 . ACCESS AND BAMCLAYCARD WELCOME,
YOU MAY TELEPHONE WTH YOUR CARD NUMBER AND REOUREMENTS. YOU MAY TELEPHONE WTH YOUR CARD NUMBER AND REQUREMENTS.
TRADE ACCOUNTS ON APPLCATION, GOVERNMENT \& EDUCATIONAL DEFT CT

ORDERS WELCOME E 10 MIN.
19 Bevois Valley Road, Southampton, Eants. SO2 0JP Tel: (0703) 39261

TRS 80
SOFTWARE

The leaders in

 innovative softwareAll types of programs for the TRS 80 Model 2 software available soon Large 18p SAE for our current catalogue A. J. HARDING

(MOLIMERX)

28 Collington Ave., Bexhill, E. Sussex.
Tel. (0424) 220391

TRITON STRINGS

The Machine-Code routine given in Listing 1. allows 'Triton' V5.1 BASIC to handle four 'string variables' of up to 15 characters each, or two strings of up to 31 characters each, or one string containing up to 68 characters.

The strings are designated A, B, C, D and E and can be 'written into' by BASIC at any time using the Command CALL $1, n$ and recalled at any time using the Command CALL O, n where ' n ' is a variable A, B, C, D or E.

The Command 'CALL T' will automatically compare the strings in A and C and return with the BASIC variable ' Q ' set as below :

If $\mathrm{A}>=\mathrm{C}$ then $\mathrm{Q}=1$ otherwise $\mathrm{Q}=0$
After the Machine-Code routine has been entered, use the 'Direct Basic Command' POKE 5249,8014. This changes the contents of locations 1481 and 1482 H to 1 F 4 EH , the start of the Machine-Code routine, and 'signals' the end of memory available for Basic programs. Before loading a completed program onto tape, use the 'Direct Command' POKE 5632,8120 to change the address at 1600 and 1601 H to 1 FB 8 H , the end of the Machine-Code program.

EXAMPLE 1

10	LET $I=8014,0=8046$
20	PRINT 'WHAT IS YOUR NAME ? ' ;'CALL I,A
30	PRINT
40	PRINT 'HELLO' ,CALL O,A;PRINT 'I HOPE
	ARE WELL!'
50	STOP

In this example I and O are first 'set up' with the call addresses of the IN and OUT routines. After the CALL I in line 20 the routine first checks for a comma after the call address and will go to the error exit if no comma is found. On finding a comma, the routine obtains the address of the variable (ie A, B, C, D or E). The routine will again go to the error exit if the variable is not valid. If all is 'well' the routine uses this address to calculate the 'starting' address of the string variable called, sets up the DE register and calls 'Indata' in the Monitor.

CALL O in line 40 goes through a very similar routine except that it puts 04 H in location 1FFF H before calling 'Pdata' in the Monitor. This is because 'Pdata' will not return until it 'sees' the 'end of the text' marker (04) and if a long CALL I has 'overflowed' into non-existent memory beyond 1FFF H, the 04 marker would be missing. Also, of course, 04 would be missing if a CALL O was made to a non-existent string.

EXAMPLE 2

Add the following lines to Example 1.
15 LET T=8083, C=8152
50 POKE C, 74 ;POKE C $+1,79$;POKE C+2, 72 ;POKE C $+3,78$;POKE $\mathrm{C}+4,4$

PRINT 'ENTER YOUR NAME', C CALL I,A PRINT;CALL T IF $\mathrm{Q}=1$ ' PRINT 'YOU HAVE ENTERED THE CORRECT NAME';GOTO 100
 90 IF Q=0 PRINT 'YOU HAVE ENTERED THE WRONG NAME - TRY AGAIN'
 GOTO 50
 STOP

In this example, line 50 'Pokes' the 'password' (JOHN) into string variable ' C ', the start address of which was set in line 15 ($\mathrm{C}=8152$). Line 70 calls the comparing routine and returns with ' Q ' set for lines 80 and 90.

Note that line 50 ends with POKE --, 4. This is required by the CALL T routine. Note also that, for the CALL T routine, the 'Data' must always be put in variable ' C ', the string to be tested always being put in variable ' A '.

Given below are the Hex and Decimal addresses of the routines etc.

HEX DECIMAL

FUNCTION
IF4E
8014 Places string in memory area indicated by variable after comma in CALL I

1F6E 8046 Calls string from memory area indicated by variable after comma in CALL O

1F93 8083 Compares strings in A and C and returns $\mathrm{Q}=1$ if $\mathrm{A}>=\mathrm{C}$

1FB8	8120	Start of string ' A '
1FC8	8136	Start of string 'B'
1FD8	8152	Start of string 'C'
1FE8	8168	Start of string 'D'
1FF8	8184	Start of string 'E'

1F4E CD BD
$\begin{array}{llllllllllllll}1 F 50 & 09 & 2 \mathrm{C} & 2 \mathrm{E} & \mathrm{CD} & 8 B & 09 & 7 \mathrm{D} & \mathrm{A} 7 & \mathrm{D} 6 & 80 & 17 & 17 & 17 \\ \mathrm{C} & \mathrm{A} & \mathrm{DA}\end{array}$
1F60 32 09 D5 5 FF 16 1F CD 1B 00 D1 C9 C3 320921 FF

$\begin{array}{lllllllllllllll}1 \text { F80 } & 17 & 17 & \text { C6 A0 } & \text { AA } & 32 & 09 & \text { D5 } & 5 F & 16 & 1 F & \text { CD } & 23 & 00 & \text { D1 } 1 \\ \text { C9 }\end{array}$
1F90 C3 32 C9 D5 21 A3 $14 \begin{array}{lllllllll}36 & 00 & 23 & 36 & 00 & 21 & \text { B8 } & 1 F & 11\end{array}$
IFA0 D8 1F 1A FE 04 CA B1 1F BE C2 B6 1F 2313 C3 A2
1FBO IF 21 A3 $14 \begin{array}{llllll}36 & 01 & \text { D1 C9 } & \ldots & \text { Table area to } 1 \text { FFF }\end{array}$

Note: In BASIC : 10 LET I=8014, O=8046, T=8083
Listing 1 Complete listing for 'String Variables'
with 'TRITON' V5.1 BASIC.

> Just how many bytes can you get from an Apple? We have taken a look inside the ITT 2020, its close relative, and report on what we found.

Regular readers of CT may remember an article entitled "PET IMPRESSIONS" which I wrote in the December issue, shortly after buying the 8 K model. Apart from a few grumbles about the data tape transfers and the operating manual I gave the general impression that the PET is good value for money and worthy of a place in any home. Since that time, nothing has happened to change my opinion of Commodore's brain-child. A few weeks ago however, we had an addition to the family, not the bellowing type that keeps you awake but in the shape of a slim grey box about four inches high with the disarming appearance of an office typewriter with the lid on. It introduced itself as the ITT 2020 APPLE SYSTEM and boasted that it had 48 K 's worth of RAM smoldering away and the capability to present its data output in full technicolour with audio accompaniment. The device now sits on the same table as my PET with a colour TV sandwiched between them, acting as a kind of United Nations mediator charged with keeping the peace.

Like Father, Like Son

I think it would be advisable at this point to dispell any false impressions regarding my affluence and ability to buy a PET one month and an APPLE shortly afterwards. The explanation is reasonably benign. My son, who previously betrayed little interest in computing subjects, started tapping away at the PET (my PET) and after a few hours of high voltage questioning started writing programs which, to my annoyance, worked first time (mine never seem to!). For the next
week, I was virtually excluded from the keyboard and resigned to reading Wuthering Heights for the third time. This frightening prospect was mercifully relieved by a formal announcement from my son that he was going to buy a computer for himself. After a few weeks lull, during which every magazine and trade journal remotely connected with the microprocessor art was devoured, a decision on the APPLE was reached. A day or so later, the small grey box left the portals of MICRODIGITAL in Brunswick Street Liverpool and was placed with due reverence on the table in the previously described position. I was given special dispensation to operate the machine when it was not "occupied", although in practice this privilige has turned out to be rather infrequent. In spite of this, I have managed to fathom out the operating system, dissect some of the hardware mysteries and finally gain an overall impression of the intruder's capabilities.

The Apple Family Tree

Because the generic title "APPLE" covers a variety of subspecies, it is necessary to define the particular model in the correct perspective. The design of the APPLE and its manufacture was due to the energy and expertise of a young american, Steve Wozniac. It rapidly became a kind of indu-try standard in the American hobby market and also achieved high volume sales in the "small-business" area. It eventually infiltrated to this country in two guises ; the normal APPLE with simple modifications to the power supply to suit our 230 volt mains and a closely similar model manufactured by ITT and called the "ITT 2020". I am not qualified to judge which is the "best", in fact there would appear to be little merit is posing such a question because of the close generic correspondence. However, the following observations are based on the ITT 2020.

Documentation Package

In general, the support literature which comes with the model is superb. It consists of "The APPLE II REFERENCE MANUAL", "BASIC PROGRAMMING REFERENCE MAN.

ITT 2020 OVERVIEW

UAL" "APPLE II BASIC PROGRAMMING MANUAL" and the " 2020 MICROCOMPUTER SYSTEM which explains the few subtle variations wheih distinguish it from the parent APPLE. Within this package is the most complete and unequivocal definition of the BASIC language I have ever seen. It was clearly the work, not only of a man that knows his subject, but also an expert in the communication of ideas. There is also an extremely useful pull-out card of the BASIC statements in abbreviated form which after a time, would be the major programming weapon. There is one relatively minor criticism which spoils an otherwise perfect quartet ; the "2020 MICROCOMPUTER SYSTEM" does not fully cover the various differencies between the APPLE and the 2020.

In conformity with the established practice of providing for a wide range of pockets, the options include a choice of $16 \mathrm{~K}, 32 \mathrm{~K}$ or 48 K of RAM on board. BASIC is available in either of two forms: INTEGER BASIC in ROM with FLOATING POINT BASIC available as an extra on tape or vice versa. The floating point version is called APPLE. SOFT. There are a few minor differences between the two. There is also a choice between black and white or colour output. We shall assume the colour version, 48 K of RAM and Floating Point BASIC in ROM.

Getting It Working

First get your colour TV (with apologies to Mrs Beaton). Not everyone has a colour TV and very few households have a spare one so this would normally entail some delicate diplomatic approaches to the rest of the family group. Assuming these are successful, the lead (supplied with the 2020) carrying the r/f modulated signal is plugged into the aerial socket and everything is switched on. In our case, the immediate effect is a rather pleasant little tinkle from the speaker inside the 2020 whcih we have since learned is a reassurance, that all is well. A spare channel on the TV was then tuned until, finally, a rather strange pattern of multiple question marks appeared which is the calling card of the machine operating system. The pattern was very jumpy and kept flashing on and off in spite of an orgy of twiddling with the TV controls and tuning.

When all else fails, it is a good plan to read the instructions. . .which we did. Apparently there is another adjustment required inside the 2020 to adjust the output signal level to suit the various sensitivities of commercial TVs. The output in our case was far too high and resulted in overloading the aerial input circuits. The top cover of the 2020 was removed (a simple snap fit without fiddly screws), the adjustment screw was easily identified, close to the output lead itself, and turned anticlockwise until the picture was stable. There appears to be ample signal strength in reserve to cater for the most sluggish TV model. The pattern is presented in black and white because the colour requires a BASIC command before it appears.

The Operating System

No attempt will be made to describe this button by button. In comparison with the almost idiot-proof PET, operation demands a modicum of intelligence. Under power-on conditions with the reset button pressed you are not yet in the comfortable environment of BASIC. The prompt is an asterisk to indicate the operator is in the machine monitor regime. Holding the shift key down whilst pressing " B " releases a square bracket and a flashing cursor, the trade mark of the BASIC interpreter. The third option, according to the "APPLE II REFERENCE MANUAL" is the "MINI-

ASSEMBLER" system which can be obtained by keying the hexadecimal number F666 then G. This should display the symbol "!" which is the Assembler prompt.

This didn't work. To solve the mystery, the manual was again consulted and the assembler listing studied, together with machine code listing at the keyboard. There was certainly no assembler at the address stated so, on the assumption it may be at another address block, a vain attempt was made to locate it a block at a time. This was abandoned due to eyestrain after a few hundred "pages" had been scanned. A call was later made to MICRODIGITAL. One of their engineers solved the problem in approximately seven seconds. The reason the assembler didn't come up was very simple, there wasn't one in it! Apparently the version with Floating Point BASIC in ROM does not include the assembler. This is one example of the criticism made earlier regarding the discrepencies in the manual.

The Display

After serving an apprenticeship on the PET, a sharp, crisp display is soon taken for granted. This is due to two factors : first, the PET screen is small which improves the apparent resolution of the characters and second, the display circuitry is designed specifically for a character display. A twenty inch domestic colour TV does not make an ideal computer monitor! Apart from a few technical deficiencies, the main property against it is simply its size. Analogue scanning at 625 lines is quite adequate for "Crossroads" at a distance of ten to twenty feet from the screen but leaves something to be desired when it sits ten inches from your nose. In spite of this, the characters are soon acceptable and the eyes quickly adjust to the new distance.

Colour And Screen Resolution

The ability to program graphics in full colour is an exhilerating experience. One of the demonstration tapes supplied produces a truly amazing pattern of shifting geometrical squares and triangles which never seems to repeat. In fact the program was so fascinating that further investigation of the system came to a halt for about an hour. Eventually, the hypnotic spell was broken and a return made to the programming of colour. The statement format is COLOR $=n$ where n is a choice of 16 . For example, $1=$ purple, $3=$ pink, $7=$ orange etc. etc. Note that the American spelling is mandatory in the BASIC command and applies only to "Low-resolution" graphics which has a screen resolution of 40×40 with four lines of plain text at the bottom of the graphics area. For finer detail, the "High-resolution" mode can be entered by the statement HGR. The resolution here is 360×160 giving an impressive total of 57,600 plotting points with room for four rows of text beneath. Providing you have at least 24 K of RAM on board, there is an even higher resolution available by using HGR2. This gives a 360×192 resolution over the entire screen, allowing 69,120 plotting points. It is in this area that the PET becomes a poor relation to the 2020. A sine wave plotted on the PET is just a jagged mass of zigzag steps. On the 2020, it is almost equal to an oscilloscope trace.

There are one or two little snags however when on high resolution. There are only 7 colours available and these are almost unpredictable. In fact, the colour you get depends more on the plotting co-ordinates than the programmed colour. A curved line takes on a rainbow hue as it runs across the tube due simply to the PAL TV system finding itself unable to cope with the abrupt digital changes. The bandwidth is just not good enough to handle the situation. This is
not the fault of the 2020 but is simply a case of incompatibility which can only be finally resolved by installing a video monitor designed to the demanding standards of a rapidly changing logic output. However, one soon learns to accept the appearance and possibly with time, could even prefer the kaleidoscopic squiggles on the TV screen. The high resolution is a bonus that easily makes up for the loss of colour purity.

A neat little extra is provided in the form of a ferrite ring through which the aerial lead to the 2020 is threaded. This neat little dodge effectively traps the 50 Hz magnetic field and localises it to within a small area rather than throwing it around the four corners of the universe. It also provides a second order defence against the injection of mains spikes, glitches and similar acts of aggression. Summarising, the highresolution capabilities are excellent, the colours are fascinating and the graphic characters are as good as can be expected from a commercial TV with r/f modulator input.

Cassette Tapes, Or Does It

'The 2020 package includes a lead with a DIN outlet at one end and a couple of PHONO plugs at the other. By a fortunate coincidence, an oldish recorder was available described on the label as an ITT "SL58 super", had a DIN socket at the back with "automatic recording level" facilities and whose working life had previously been devoted to the occasional rendering of a Mike Jagger sonata.

Perhaps the sudden honour of being responsible for filing computerised intelligence swelled the machine out with pride because it behaved impeccably in the first instance, loading and saving with an almost reckless abandon. This triumph was, sadly, short lived. The next evening, the wretch appeared to be in an unpleasant mood and often failed to load. It recovered spasmodically but at various times over the next few weeks it decided to sulk. Now there is no worse experience in the life of a home computer fanatic than the frightening possibility of losing a program which has probably taken a week to write and debug.

Everything is tried, including a purposeless adjustment of the volume control (even when you know the exercise is irrational because of automatic level). The sequel to this tale of woe was a happy one, it was just a poorly fitting socket in the phono input of the 2020. Apparently, modern technology can overcome the seemingly impossible feat of cramming about 30,000 semiconductors on to a small chip of silicon but can't seem to master the art of reliably mating one piece of metal with another.

Now althougn tape transters are quite reliable, it becomes evident that the designers of the APPLE/ITT had not taken the idea of cassette storage very seriously. No doubt they assumed that anyone could afford an extra 400 pounds for a floppy disc. There is no provision for naming programs, no friendly advice from the screen telling you to "PRESS PLAY AND RECORD" etc (like the PET). In fact, the only help you get is an audible tinkle when the tape heading code is found and another when it is ended. Adequate I suppose but, after the PET, a little on the stark side. One advantage however is the speed of the tape transfer. The baud rate is substantially higher than the PETs and you are spared the almost interminably long period waiting for a few kilobyte program to load.

The Interior Furnishings

The case of the 2020 is clean, unobtrusive and constructed from some form of heavy, shock-resistant plastic. I still find it a miracle that such power and sophistication can be buried in such a small box. One advantage of being old is the

An internal view of the 2020 revealing the neat layout.
ability to appreciate the avalanche of technology which has taken place over the last half century. Ten or more years ago, the power of the APPLE would have demanded a room full of massive floor-standing cabinets weighing several tons, equipped with expensive temperature and humidity controls and costing something around 40 thousand pounds. The younger generation will take the APPLE for granted, perhaps even grumble because it hasn't got a Pascal compiler in ROM!

Back from nostalgia to the 2020 entrails. Snapping open the lid reveals one large mother board crammed with orderly arranged rows of RAM and ROM chips, the 6052 microprocessor and various TTL odds and ends. Occupying the left hand side is a long silvery box which houses the power unit.

The power available is adequate to supply not only the internal demands but also the eight possible peripheral interfaces which can be inserted in the rear slots. These slots are high quality, multipin sockets arranged at the back and designed to serve a wide range of add-ons. There are 50 pins on each, carryin gthe A0 to A15 address wires, D0 to D7 data wires, reset, address-select, powerlines etc etc. In addition to these eight peripheral slots, there is also a 16 pin DIP socket which has been primarily supplied to provide various game devices, switches, lamps, paddles etc. It can also be used to drive a serial device such as a teletype or printer, through suitable current buffers. As previously mentioned, a small loudspeaker is built in delivering about 0.5 watts of audio power which is ample for the emission of whistles and other signals which you may wish to provide under program control.

Keyboard

This has the standard QWERTY layout with the numerics on the top row (there is no separate numeric pad). Unlike the PET, there are no pretty little lines, blobs, corners or other graphical signs which PET users are accustomed to expect. The experienced tough typist would feel immediately at home. The feel is good and is extremely quiet. I found the editing facilities a little awkward after the PET. For example, there is no UP/DOWN cursor key; instead, the procedure is to hold the "ESCAPE" key down whilst pressing, then releasing another key. To delete, a character, one has to LIST the line first and run the cursor over all the characters within the statement number. Fortunately, there is a fast acting "REPEAT" key which soon scurries along over the characters so it is not too bad. It may be of course simply a case of "the best keyboard system is the one you are used to!".

The indication of POWER-ON is an illuminated pad at the front of the keyboard. I wonder why manufacturers always position the power switch at the back? It is slightly irritating to fumble around with the fingers before finding

Another internal angle showing the colour card.
the wretched thing. After all, the power consumption of most home computers is less than a 60 watt bulb so it would surely be possible to position a small switch at the front.

The BASIC Language

For all practical purposes, the version of floating point BASIC (PALSOFT II) in the 2020 is the same as the PETs, but . . and it's a big but . . with some very powerful extras. Most of these are concerned with the low and high resolution graphic facilities which will be discussed last. In the meantime, some of the other useful little extras are worth mentioning. If we type SPEED=n (where n is any number between 0 and 255) we can control the rate at which characters are printed onto the screen.

It is a strange thing but even highly intelligent people, when confronted with a keyboard and a VDU screen often seem to lose comprehension. They read the message but it doesn't sink in, probably because of "instantaneous" presentation of a page at a time. With say, SPEED $=50$, the characters appear in orderly progression and the eye seems to lockon to the brain at the same speed. Another advantage of the speed function is during a program LISTING. The usual scrolling rate (which appears to be at the speed of light) is too fast to "capture" the particular bit you want, it's gone before you have time to stop it. A nice leisurely scrolling speed is a real pleasure to use during a bout of debugging. It may be argued of course that even without the SPEED=n facility, it is easy to set up a FOR/NEXT loop to provide a brake on the printing speed but what a nuisance each time?

Another useful addition is the TRACE command which remains in operation until cancelled by a NOTRACE. The display prints out the line number of statements as they are executed which is of great use in following the progression of branch decisions and subroutines.

FLASH is another handy little dodge for calling attention to a particular part of the screen (the text alternates rhythmically between normal and reverse display). STORE x stores a numeric array x on tape and RECALL x loads the array back again. ONERR GOTO x provides a means of overriding the natural tendency of the machine to come to a sudden halt whenever it detects even the most trivial fault. Often, when confronted with one of the cursed error messages in BASIC, you feel like saying, "Iknow that you idiot, but carry on for the moment and I shall fix this later in my own time". The ONERR facility allows the machine to jump to a routine which handles the situation. RESUME causes a return to the offending statement.

Drawing Pictures

Just because the 2020 doesn't have a set of "Graphic" characters at the keyboard it doesn't mean space craft, submarines or geometrical structures cannot be drawn. In fact
far more detailed drawings can be attempted (of almost any structure) but unfortunately at a certain cost in intellectual energy. The procedure is based on a set of machine code bytes called a SHAPE TABLE. The required shape is first drawn on graph paper in the form of small arrows indicating the linear path of the final shape. This graph is then translated into 8 bit patterns, converted to hexadecimal and stored as data bytes in a suitable memory block. Once stored, and the starting address noted, the shape can be displayed on the screen by the simple expedient of writing DRAW n at x, y where n is the drawing number (there can be many) and x, y are the coordinates at which you desire the drawing to commence. Some truly remarkable tricks can now be done with your shape. ROT $=n$ will actually rotate the drawing clockwise by an angle dependent on the value of n.

To blow up the size of a drawing, the command SCALE $=n$ is used where n is the scaling factor desired ($\mathrm{n}=1$ to 255). After the initial fumbling period is over, these facilities can work miracles on the TV screen. Imagine for example the effect of manipulating even a simple triangle with random draw, rotate and scale within a FOR/NEXT loop with random colour thrown in for good measure. The effect is truly hypnotic.

Shape tables can be stored on tape by using a machine code routine Write and reloaded by a BASIC command SHLOAD.

Available Peripherals

The APPLE has been around for some years so, as expected, there are a wide variety of well-tried peripherals available. Printers, floppy disc units, XY plotters, D/A converters, ad nauseum. Most of them are expensive. Without doubt, the most desirable item which opens entirely fresh horizons would be a floppy. Another useful bit of apparatus which appears to have possibilities is a contraption called a "Writing Table". As I understand it, it is possible to literally draw a shape table with a pen (a special electronic one of course). The result is transferred directly into hexadecimal machine bytes for subsequent display using DRAW n. There are of course boxes which enable conversations in "normal" speech to be carried out between man and machine although I must confess this fails to arouse any enthusiasm in me. We often have difficulty in communicating effectively with each other so the chance of making a machine understand us appears to me a somewhat abortive exercise. A few 'Dalek' type monosyllables are all very well as a gimmiky laugh but it is doubtful if modern gobbledegook like". .the house is unable, at this point in time, to consider the implementation of para 4 b of the Foods and Drugs Act until the present economic climate has strengthened" would make much sense to an APPLE, however much was spent on the interface.

The Economics

It is unnecessary to state the prices of the APPLE/ITT in actual figures because the current orgy of price fluctuations would render facts and figures out of date. It is relative prices which are important. The price of the APPLE/ITT 2020 has spiralled downwards faster than the PET to such an extent that no longer is the comparison unrealistic. The firm of COMMODORE must do something about it or they will be in danger of their markets being invaded by that small grey plastic box.

To sum up, I am still very happy with my PET but not quite so happy as I would have been had I never operated an APPLE.
Credits: Our thanks are due to the Byte Shop. Tottenham Court Rd., for the loan of an ITT 2020 for photographs.

SOFTY Software Development System

- Direct output to TV
- On board 2704/2708/2716 EPROM programmer
- High speed cassette interface
- 1K byte monitor in 2708 EPROM
- 1 K byte RAM, 128 bytes scratchpad RAM
- Reprogrammable to other applications
- Any external memory device can be displayed on screen to copy on to tape or into EPROM
- Access at card edge to all buses
- 22 in/out Ports
- Multi-function keyboard
- Standard card width of 114 mm for 19 inch systems
- High quality double sided, solder masked PCB with component designations (all I.C. sockets included in kits)
- Comprehensive manual covering assembly and use

SOFTWARE DEVELOPMENT

To develop software hexadecimal data is entered via the keypad into the working RAM. This is displayed on-screen so that the contents of every address are clearly seen. By connecting the address, data and control buses (at the card edge) to the system under development, an external microprocessor may access SOFTY's memory executing the resident program in RAM and/or EPROM halting at set breakpoints if desired. In this way data may be quickly altered until the required program is complete. Any program may be stored on cassette for later use or written directly into EPROM for use by the external system, independent of SOFTY.
SOFTY Prices:
SOFTY Kit-of-p,arts (iṇcludina zero insertion force socket for EPROM programmer, ribbon cable and 24 pin D.I.L. header plug for connection to the system under development) Price $£ 115$ (inc. VAT, p \& p).
SOFTY power supply kit $£ 23$ (inc. VAT, p \& p).
SOFTY built and tested $£ 138$ (inc. VAT, p \& p).
Write or telephone for full details.
MODEL 14 EPROM ERASERS

MODEL UV141 EPROM ERASER

- Fast erase times (typically 20 minutes for 2708 EPROM)
- 14 EPROM capacity
- Euilt-in 5 to 50 minute timer to cater for all EPROMs
- Safety interlocked to prevent eye and skin damage
- Convenient slide-tray loading of devices
- 'MAINS' and 'ERASE' indicators
- Rugged construction
- Pricied at only $£ 89.70$ (inc VAT, p \& p)

MODEL UV140 EPROM ERASER

Similar to Model UV141 but without timer
Low price at only $£ 70.73$ (inc VAT, p\& p)
WRITE OR TELEPHONE FOR FULL DETAILS OR SEND CHEOUES/OFFICIAL COMpany orders to

Skardon Works, Skardon Place, North Hill, Plymouth PL4 8HA. Telephone: Plymouth (0752) 28627
TRADE AND EXPORT ENQUIRIES WELCOME

Micro-Computer Centre for the MIDLANDS

Nascom and Commodore Specialists

Business and Leisure Micro Computers, stockists of well known computer systems and micro processors B\&L Micros offer a user service which will be of special interest to the businessman as well as the hobbyist seeking a new and exciting challenge.

A full range of micro computers and peripherals are available, whether buying or browsing we can give helpful and friendly advice.

Nascom 2 complete kit ex. stock $£ 295.00+$ VAT or fully built and tested $£ 335.00+$ VAT

Nascom 1 super new low prices $£ 125.00+$ VAT or fully built and tested $£ 140.00+$ VAT this has to be the best starting point for anyone interested in Micro Computing.

We are now sole distributors for the Micro Type case for your Nascom 1 \& 2, also stockists of the William Stuart colour graphics and full range of add ons

> C:
> Business \& Leisure Micro Computers
> 16 The Square, Kenilworth. Werwickshire CVO 1EB. Tel: (0926) 512127

For Nascat it with F-FBC Th and a

索 AUTO LATERAl MFFGET HOUFS دA O5

* POUEREL ERIT FACTIJTSB
本 GELECTIUE \& RE, ROATASi F - \&ROE
CHECKED CAGBETTE RGAE A\&T WRETE

QA CHURCH STGE, thtSEIE. W, AETIS
Telethone: (0si, () 27? 3^{*}
On Cassettro wikh smcumentation sh

inclurins $\vec{F} \mathrm{P}$

Word Processor now includes Direct Entry Colour
Graphics. Telephone for details.

1 CLOCK RADIO

How about a round clock radio which can double as a very smart desk clock - as we can testify!
To time, rotate one end of the cylinder to display the frequency selected. Most of the functions are controlled by a push-button panel and the display is a large, clear LCD affair.
Made by Hanimex, the battery clock radio comes in white, white or white. It will lull you to sleep and then turn itself off an hour later and waken you to the sound of Radio 1, or music if you prefer.

To: CLOCK RADIO offer CT Magazine, 145 Charing Cross Road London, WC2H OEE

Name
Address

2 DIGITAL ALARM

This mains-only Hanimex alarm has a large 12-hour display incor porating AM/PM and alarm set indicators. You can have a dim or bright display at the touch of a switch. Fast and slow setting buttons make time setting simplicity itself. You can forget about knocking these accidentally in the morning scramble to turn off the alarm, as a locking switch is fitted under the clock. A 9 -minute snooze switch completes the list of all mod. clock cons.

$£ 10.60$

 To: DIGITAL ALARM offer CT Magazine, 145 Charing Cross Road London, WC2H OEEName
Address

3 LCD CHRONO

Our Chrono comes complete with a high grade adjustable metal strap and is fully guaranteed.
The LCD display shows seconds as well as hours and minutes. Press a button and you get the date and day of the week.
Press another burton and you have an accurate stopwatch with hundredths of seconds displayed, giving the time up to an hour. There's a lap time facility, too - and of course a back light.

To: LCD WATCH offer
CT Magazine, 145 Charing Cross Road London, WC2H OEE
$E 1 \cdot 0$
Name
Address

4 LCD ALARM CHRONO

This is no ordinary watch. It's a slim, multi-function, dual time LCD alarm chronograph.
This model will show hours, minutes, seconds, date, day of the week, stopwatch, split time, alarm and alternate dual time zone not all at once of course. There's a night light, too.
Hours, minutes, seconds and day of the week are displayed continuously, while the date will appear at the touch of a button. The alarm is beefy enough to wake you up in the morning and get you to work on time (or wake you up when it's time to go home).
 offer
CT Magazine, 145 Charing Cross Road London, WC2H OEE

Name
Address

This short program written in TRS－80 Level II BASIC enables the user to calculate the cost of his／her domes－ tic gas consumption at any time during the quarterly period．It takes account of the latest price increases and will provide an additional check on the official account．

The program is self－prompting and easy to use in addition，it is quite easily altered to take account of future price changes．

pROGRAM LISTING

```
:WOLFFRINT
```



```
itu FFIIT
:ev PF:INT
1こ0 FRINT :TFIT "ENTEF LUFFENT METEF FEAL\ING ",R
200 PRINT INFU: ENTEP PREVIOUS METEF FEAC:ITU心 ",F
\Sigma二⿹勹巳
240 T = iC * 122- 1, 1Ev0
-OU PF:HT GMS SUPPLIEL \TMEKMS, THIS QUMRTER = ",T
z'80 H=52
200 L =T-5%
```



```
Z23 X=H: L4 O
```



```
$00 FFINT"
420 PKINT
4\U FRINT IHWUT"ENTEF CFEL:ITS LARRIEC, FURWARL ".S
40U PRINT IIWPUT "ENTER UEEITS CHFR:EL. FURWNARL ", I
460 PRINT INPUT"ENTER CREDITS THIS PERIOO ".M
```



```
520 B = (\N%Y, 100)+2 16) - (M+S-D)
540 E=INT (B-100+B 5,10B
560 IF ( ( (Y+Y) 100)+2 16) ( (M+S-0) GOTO 580 ELSE 620
*80 PRINT USING"CURRENT CREDIT CARRIED FORWARD = w*** w* ", -B
000 GOTO 999
620 PRINT USING"CURRENT DEEIT CARRIED FORWRRD = ******.B
999 E/GC
de FFINT
Cev PF:M
                                    HMCLULES 2 IE STARCO!HL LHARGE, "
```


Program Notes

In its present form the program is written for both types of consumer，those who budget by paying a set monthly sum to the gas board，and those who prefer to pay the bill as and when it arrives．In the latter case the user would answer the prompt＇enter credits carried forward＇by entering 0.00 ．

A program listing，followed by a sample run，is given below．

SAMPLE RUN

ENTER CURRENT METER READING ？ 4476
ENTER PREVIOUS METER REROING ？ 4103
QAS SUPPLIED（THERMS）THIS QUARTER $=383671$ CHARGES THIS QURRTER＝ 6958
（INCLUDES 2． 16 STANDING CHARGE

ENTER CREDITS CARRIED FORWRRD 92713
ENTER DEBITS CARRIED FORWARD ？ 08
ENTER CREDITS THIS PERIOO ？ 3080
CURRENT DEBIT CARRIED FORWRRD $=1245$
REPOY
＞－

SPECIAL OFFER

ELECTROSTATIC PRINTER

Ask most people what they would like as their first peripheral and the chances are they will say "Printer". Well, thanks to CT , we are being generous this month, here is an attractive electrostatic printer from the famous firm of Centronics. Capable of printing in three sizes of typeface it is easily attached to your machine by way of the parallel interface. The logic is fully TTL compatible and STROBE, Acknowledge and Busy lines are provided to make life easy.

For those of you who don't feel up to the task we will be publishing interface details in next months issue for several different machines.
Cost of this wonderful peripheral is a mere $£ 224.25$ including VAT and carriage and stocks are good. Paper is also available at $£ 2.50$ a roll for those who wish to list the "Encyclopedia Universa". The printer comes complete with documentation, connector and cleaning paper as well as a roll of the printing paper.

Don't miss out, be the first on your street with your own printer and then you can send us that latest program all neatly typed out!

£224.25 all inc.

The Video Genie System, EG 3003. At last, value for money in microcomputers. $£ 425$ incl. Vat

* 16 K User RAM plus 12 K Microsoft BASIC in ROM
* Fully TRS-80 level II software compatible
* Huge range of software already available
* Self-contained, cassette, PSU \& UHF modulator
* Simply plugs into video monitor or UHF TV
* Full expansion capability for disks \& printer

For full details please contact:
LOWE ELECTRONICS

Chesterfield Road,
MATLOCK, Derbyshire, DE4 5LE

Telephone 06292817 or 2430
Telex 377482 LOWLEC G

Has the milkman had the paperboy's money again this week? If your home finances have run amoktry this program.

This program was developed in order that a 'domesticated' 8 K PET would look after the household finances. It could be adapted by the one man business or entertainer to keep track of spending against budgeting.

Although written for the PET, this program can be converted into most BASIC dialects that have string handling facilities. The graphics routines may cause a problem, these routines could be replaced by a conventional alpha-numeric display.

Accounting For Oneself

The concept of the program is to have 17 running budget accounts, (gas, food, spending money etc.), that are injected with a declared monthly allowance.

Money drawn against a budget is actioned as follows:-
a) Amount is deducted from appropriate budget with the new total being displayed.
b) Money is deducted from the monthly 'status' account with a warning if you have gone in the red.
c) Deduction from bank account with a warning if you are in the red.
If the savings account is being handled, then the first operation is modified in that money is put into the savings account.

The facilities within the program are shown in Figure 1 , this being a typical photograph of the screen display. The access to the 'Initial set-up' is mainly to assist in any debugging of the program. It is, in actual fact, a subroutine used if you are on the first run.

Data Or Input

One of the main considerations of the program, when it was being written, was to allow complete flexibility in setting up the budget names and allowances during a program run. It's all very well having DATA statements which take up valuable memory, but the PET has a nasty habit of losing all stored variables if any part of the program is altered.

Setting Up The Program

Once the listing is entered there are a few 'customising' lines that must be dealt with :-
Line 10 : This line must be set up with your own security password. Beware, if you type the password incorrectly during a program run, you will lose the whole program.
Lines 1280 : These lines have to be filled with your standing 4220 orders, direct debits etc.
Lines 5000 : These lines cover the two routines that produce
to 6420 bar graphs of one's salary and total savings. If the scales need altering the following alterations need incorporating :-
a)The print statements that display the scale and

The initial screen showing the available 'menu".

```
THEM HEOUTH TO RECORD ALL YOUR DATA ONTO
EIPST YOU YUST VERIFY THE FOLLONING -
```



```
THIS MILL BE FILE NO. S
HTSW, CHEGUE WAS, 24528B
PRESS PLAY & RECORD ON TAPE &1
```

A verification display prior to a tape update.

Budget listing. Note the leading and trailing zeroes with reverse graphics for overdrawn status.
left hand border will need rescaling.
b) The FOR . . . NEXT loops in lines 5300 and 6250 have to be set up in the following format FOR $]=[$ MIN $]$ TO [M \%(I)] or [S\%(I)] STEP [LINE SPACING]
Line 1220 : In declaring your take home pay, the computer will calculate your total savings, (total savings = savings + bank balance), and both savings and salary are stored for the month you are in. If your salary is paid in the next month then the subscript in lines 1160 and 1220 have to be altered. The subscript denotes the month number for the integer variables.

The Budgets

The program uses 20 'triplets' of subscripted variables and strings, namely,
$\mathrm{T}(1-20)$ This carries the budget totals.
$\mathrm{B}(1-20)$ The budget allowances are held here.
$\mathrm{B} \$(1-20)$ These store the budget names.

The program can easily be modified to use more than 20 budgets but consideration must be made to the lines available on the screen display.

Up And Running

The first run should be used to set up the budget names and allowances. You will find the first three budgets are reserved and named as follows :-

BUDGET 1 - Monthly running total.
BUDGET 2 - Bank account status.
BUDGET 3 - Savings.
Don't be too worried at this stage in naming all the budgets or setting allowances. This, because of the flexibility of the program, can be settled at a later date.

It is wise at this stage to produce a data tape. If this is not done and a salary update is tried, then corrupt data will be transferred into the integer variables. This is due to the non existance of any date input. This only occurs at the tape dump and retrieval stage.

During your first data tape production the validation checks will show a date of $0-0-0$. This should be corrected, also the last cheque number will read zero and this too can be put right during the program run.

Once the tape has been produced the program can be re-run. From here on all facilities are self explanatory during the run. As a safety precaution, the data is dumped twice. As long as the data was read in correctly and the tape is not moved during the program run, the second dump will be written over at the next dump.

PET Peculiarities

The PET's mathematics are not that hot, at least not on the author's. An example is :-

$$
10.1-10=.10000001
$$

This, at times, has an irritating effect on the leading and trailing zeros and decimal point alignment when displaying the budget totals or allowances. It is not a common occurence, but, is slightly irritating when it happens. Maybe another reader has solved the problem?

Listing Notation
 All parts of the program listing that are enclosed by square brackets are instructions :-
 PASSWORD
 Your particular word or number
 STANDING ORDERS Total standing orders
 CLR
 Clear VDU display

Data loading. Note the last cheque details and date.

The salary graph. Scales may be altered to suit.

Saving graph. Scales can be adjusted, current month uses different graphics.

```
R
4\timesCU
?
```

Revers graphics on
Four cursors up
PET shorthand for 'PRINT on
VDU screen'

Post Script

A method to eliminate the mathematical 'problem' has been given to me during a phone call to Microdigital. It has not been included in the program due to the lack of time available. There is room left in the program to accommodate this. Here it is :-
After a calculation, either by subroutine or dotted around

HOME FINANCE

Cheque clearing routine. Note overdrawn budget display.

Monthly standing orders must be set up. See text for details.

Initial setting up display.
the program, uiv iviiowing format.
VARIABLE JUST ALTERED $=$ INT(VARIABLE JUST ALTERED X 100) / 100
This works quite well except when subtraction has occurred. The 'nasty' that can happen then is something like 1.59999999 instead of 1.6 . It will then seem not to be able to subtract as the answer, after the subroutine will give 1.59 .

[^1]20 ?" [CLR]" TAB(7)" BANK ACCOUNT-HOME FINANCE
30 ?TAB (19) "[CD] BY
40 ?TAB (14) "[CD] ELAINE DOUSE
50 FOR I=1 TO 3000:NEXT:POKE 59468,14
70 ?"[CLR] Is this a new program?
80 GOSUB 810 : IF R $\$=$ "Y" THEN 8000
90 GOSUB 9500
100 ?"[CLR]" TAB(17) "M EN U
110 ? TAB(4) "[CD] 1. SALARY INPUT, BUDGET UPDATE
120 ?TAB(4) "[CD] 2. CHEQUE CLEARING
130 ?TAB (4) "[CD] 3. DISPLAY ACCOUNTS
140 ?TAB(4) "[CD] 4. DISPLAY BUDGETS
150 ?TAB(4) "[CD] 5. GRAPHIC DISPLAY OF SALARY
160 ?TAB(4) "[CD] 6. GRAPHIC DISPLAY OF CAPITAL
170 ?TAB(4)"[CD] 7. ALTER BUDGET TITLE AND ALLOWANCE
180 ?TAB(4) "[CD] 8. INITIAL SET-UP
190 ?TAB (4) "[CD] 9. UPDATE TAPE FILE
200 ?TAB(3) "[CD] 10. INTER ACCOUNT TRANSFER
210 INPUT "[CD.CD] Please type category required";R
220 IF INT(R) < > R THEN 100
230 IF $\mathrm{R}<1$ OR R > 10 THEN 100
240 ON R GOTO 1000, 2000, 3000, 4000, 5000, 6000, $7000,8000,9000,10000$
250 GO TO 100
800 ?"[R] PRESS ANY KEY TO CONTINUE
810 GET R\$: IF R\$ = " "THEN 810
820 RETURN
1000 ?"[CLR] DATA WILL BE DESTROYED IF I CONTINUE
1020 ?" [CD] Are you happy for me to proceed?" : GOSUB 810
1060 IF R\$ < > "Y" THEN 100
$1160 \mathrm{M} \%(\mathrm{~N} 2)=\mathrm{T}(2)+\mathrm{T}(3)$
1220 INPUT "[CLR] What is your take-home pay please"; $\mathrm{T}(1): \mathrm{S} \%(\mathrm{~N} 2)=\mathrm{T}(1)$
$1280 \mathrm{~T}(1)=\mathrm{T}(1)-$ [STANDING ORDERS] : $\mathrm{T}(2)=\mathrm{T}(2)$ $+\mathrm{T}(1)$
1300 ?"[CD] After standing orders your balance is" : ? T(1)
1340 ?" [CD] Your current savings are" : ? T(3)
1360 ?" [CD] Your bank balance stands at" : ? T(2)
1380 GO SUB 800
1400 FOR $\mathrm{I}=1$ TO $20: \mathrm{T}(\mathrm{I})=\mathrm{T}(\mathrm{I})+\mathrm{B}(\mathrm{I}):$ NEXT $: \mathrm{GO}$ TO 100
2000 ?" [CLR]
2020 FOR I = 1 TO 20 : GOSUB 15000 : ? : NEXT
2040 INPUT "Which file do you require" ; R
2060 IF R < 1 OR R > 20 THEN 2040
2080 GOSUB 2900: $\mathrm{CH}=\mathrm{CH}+1$
2100 ?"Cheque No. "CH" please type in amount
2120 INPUT R1
$2140 \mathrm{~T}(2)=\mathrm{T}(2)-\mathrm{R} 1: \mathrm{T}(1)=\mathrm{T}(1)-\mathrm{R} 1$
2160 IF R < > 3 THEN 2220
$2180 \mathrm{~T}(3)=\mathrm{T}(3)+\mathrm{R} 1$
2200 GOSUB 2900 : GOTO 2240
$2220 \mathrm{~T}(\mathrm{R})=\mathrm{T}(\mathrm{R})-\mathrm{R} 1$: GOSUB 2900
2240 IF T(2) > $=0$ THEN 2280
2260 ?" [R] WARNING BANK BALANCE IS "T(2)" IN THE RED
2280 IF T(1) > = 0 THEN 2320
2300 ?" [R] WARNING MONTHLY BALANCE IS "T(1)"

```
    IN DEBT
2320 IF T(R)<0 THEN }236
2340 ?"YOUR" B$(R)" ACCOUNT STANDS AT "T(R) :
    GO TO 2380
2360 ?"WARNING!! " B$(R) " ACCOUNT IS "T(R)" IN
    THE RED
2380 ?"Have you more for this account?
2400 GOSUB }81
2420 IF R$ = "Y" THEN 2080
2 4 4 0 \text { GOSUB 2900}
2460 ?"Have you any more cheques to clear ?" : GOSUB
    810
2480 IF R$ = "Y" THEN 2000
2500 GOTO 100
2900 ?"[HOME] 21 x [CD]";
2910 FOR I = 1 TO 119: ?" "; : NEXT
2920 ?"3 x [CU] 2 x [CR]" ;: RETURN
3000 ?"[CLR]":FOR I = 1 TO 20: GOSUB 15000
3110 T = INT(ABS(T(I))*100)/100:A$=STR$(T) :
    GOSUB 3800
3160 IF T(I) =>0 THEN }322
3180 ?"[R]" TAB(37 - LEN(A$))" - " A$
3200 GOTO 3240
3220 ?TAB(38 - LEN(A$)) A$
3240 NEXT
3280 GOSUB 800 : GOTO 100
3800 IF T < > 0 THEN }384
3820 A$ = "0.00" ; RETURN
3840 IF INT (T) < > T THEN }388
3860 A$ = A$ + ".00" : RETURN
3880 IF INT (T*10) < > T*10 THEN }392
3900 A$ = A$ + "0"
3920 IF T < 1 THEN 3960
3 9 4 0 ~ R E T U R N
3960 A$ = "0" + RIGHT $ (A$, LEN (AS) - 1)
3980 RETURN
4000 ?"[CLR]" : A = 0
4020 FOR I = 1 TO 20
4040 A = A + B(I)
4 0 6 0 \text { GOSUB 15000}
4080 T = INT(ABS(B(I))*100)/100
4100 A$ = STR$(T)
4120 GOSUB 3800
4140 ?TAB(38 - LEN(A$)) A$
4160 NEXT
4200 ?"Your budget per month is" ;
4220 A = A + [STANDING ORDERS]
4240 T = INT(ABS(A)*100)/100
4260 A$=STR$(T)
4 2 8 0 \text { GOSUB } 3 8 0 0
4300 ?TAB(38 - LEN(A$)) A$
4320 GOSUB }80
4340 GO TO 100
5000 POKE 59468,12
5010 ?"[CLR] [R] SALARIES
5020 ?"550 | ": REM SHIFTED 'P'
5030 ?" | ":REM SHIFTED APOSTROPHE
5040 ?"
5050 ?"
5060 ?"500
5070 ?"
5080 ?"
5090 ?"
5100 ?"450
5110 ?"
5120 ?"
```

5130 ?"

```
5130 ?"
5140 ?"400
5140 ?"400
5150 ?"
5150 ?"
5160 ?"
5160 ?"
5170 ?"
5170 ?"
5180 ?"350 | [36 x SHIFTED # ]
5180 ?"350 | [36 x SHIFTED # ]
5190 ?"[6 SPACES] J [3 SPACES] F M A M J
5190 ?"[6 SPACES] J [3 SPACES] F M A M J
    J A S O N D": REM 3 SPACES BETWEEN EACH
    J A S O N D": REM 3 SPACES BETWEEN EACH
    LETTER
    LETTER
5220 P = 33410
5220 P = 33410
5240 FOR I = 1 TO 12
5240 FOR I = 1 TO 12
5260 B = 0
5260 B = 0
5280 P = P + 3
5280 P = P + 3
5300 FOR J = 350 TO S%(I) STEP 12.5
5300 FOR J = 350 TO S%(I) STEP 12.5
5310 IF S%(I) =< J THEN 5360
5310 IF S%(I) =< J THEN 5360
5320 IF I = N2 THEN 5400
5320 IF I = N2 THEN 5400
5330 POKE P + B, 160
5330 POKE P + B, 160
5340 B = B - 40
5340 B = B - 40
5360 NEXT J, I
5360 NEXT J, I
5380 GOTO 5500
5380 GOTO 5500
5400 POKE P + B, }10
5400 POKE P + B, }10
5420 GOTO 5340
5420 GOTO 5340
5500 GOSUB }80
5500 GOSUB }80
5510 POKE 59468,14
5510 POKE 59468,14
5520 GOTO 100
5520 GOTO 100
6000 POKE 59468,12
6000 POKE 59468,12
6010 ?" [CLR] [R] SAVINGS
6010 ?" [CLR] [R] SAVINGS
6020 ?"2000 |" : REM SHIFTED 'P'
6020 ?"2000 |" : REM SHIFTED 'P'
6030 ?"* : REM SHIFTED APOSTROPHE
6030 ?"* : REM SHIFTED APOSTROPHE
6 0 4 0
6 0 4 0
6 0 5 0
6 0 5 0
6060 ?"
6060 ?"
6070 ?"1500
6070 ?"1500
6 0 8 0 \text { ?}
6 0 8 0 \text { ?}
6 0 9 0
6 0 9 0
6110 ?"
6110 ?"
6120 ?"1000
6120 ?"1000
6130 ?"*
6130 ?"*
6140 ?"
6140 ?"
6150?
6150?
6160 ?"
6160 ?"
6170 ?"500 | [24 x SHIFTED # ]
6170 ?"500 | [24 x SHIFTED # ]
6180 ?"[6 x SPACE] J [SPACE] F M A M J
6180 ?"[6 x SPACE] J [SPACE] F M A M J
J A S O N D": REM SPACE BETWEEN EACH
J A S O N D": REM SPACE BETWEEN EACH
LETTER
LETTER
6210 P = 33372
6210 P = 33372
6220 FOR I = 1 TO 12
6220 FOR I = 1 TO 12
6230 B = 0
6230 B = 0
6 2 4 0 \mathrm { P } = \mathrm { P } + 2
6 2 4 0 \mathrm { P } = \mathrm { P } + 2
6250 FOR J = 500 TO M%(I) STEP 100
6250 FOR J = 500 TO M%(I) STEP 100
6255 IF M%(I) = < J THEN }629
6255 IF M%(I) = < J THEN }629
6260 IF I = N2 THEN 6300
6260 IF I = N2 THEN 6300
6 2 7 0 \text { POKE P + B. } 1 6 0
6 2 7 0 \text { POKE P + B. } 1 6 0
6280 B = B - 40
6280 B = B - 40
6290 NEXT J, I
6290 NEXT J, I
6 2 9 5 \text { GOTO } 6 4 0 0
6 2 9 5 \text { GOTO } 6 4 0 0
6 3 0 0 \text { POKE P + B, } 1 0 2
6 3 0 0 \text { POKE P + B, } 1 0 2
6 3 1 0 \text { GOTO } 6 2 8 0
6 3 1 0 \text { GOTO } 6 2 8 0
6 4 0 0 \text { GOSUB } 8 0 0
6 4 0 0 \text { GOSUB } 8 0 0
6410 POKE 59468,14
6410 POKE 59468,14
6 4 2 0 ~ G O T O ~ 1 0 0 ~
6 4 2 0 ~ G O T O ~ 1 0 0 ~
7000 ?"[CLR]
7000 ?"[CLR]
7020 FOR I = 1 TO 20
7020 FOR I = 1 TO 20
7 0 4 0 \text { GOSUB 15000}
7 0 4 0 \text { GOSUB 15000}
7060 ?
7060 ?
7 1 0 0 ~ N E X T
```

```
7 1 0 0 ~ N E X T
```

```

\section*{HOME FINANCE}
```

7120 ?"Which account do you wish to change
7 1 3 0 INPUT R
7 1 3 5 IF R < 4 OR R > 20 THEN 7 0 0 0
7 1 4 0 IF INT(R) < > R THEN 7 0 0 0
7150 Z\$ = B$(R) : Z = B(R)
7160 INPUT "What is the new name" ; B$(R)
7 1 8 0 INPUT "How much is its allowance" ; B(R)
7200 ?"[CD] [R] CHECK
7220 ?"Old "Z$" is now" B$(R)
7240 ?" [CD] And the allowance of " }Z\mathrm{ " is now" B(R)
7260 ?"[CD] [R] IS THIS CORRECT?
7 2 8 0 GOSUB 8 1 0
7300 IF R\$ = "Y" THEN 7350
7 3 2 0 \mathrm { B } \$ (\mathrm { R }) = 2 \$: B (R) = Z ~ : ~ G O T O ~ 7 0 0 0 ~
7 3 5 0 ?" [CD] Do you wishto lose this budget's
7360 ?"[CD] running total?
7380 GOSUB }81
7400 IF R\$ = "Y" THEN T(R) = 0
7 4 2 0 GOTO 100
8000 ?" [CLR] In this program you are allowed up to
8020 ?"[CD] 20 budget accounts
8040 ?"[CD] To set this up just let me know how many
8060 ?"files you require
8 0 8 0 ~ I N P U T ~ R ~
8100 IF R < 4 OR R > 20 OR R < > INT(R) THEN }800
8120 ?"[CD] Fine, now type in the name of the file
8140 ?'"[CD] followed by 'RETURN' then the allowance
8 1 6 0 ?" [CD] per month
8180 ?"[CD] [R] NOTE
8200 ?" [CD] As the program stands, the first 3 files
8220 ?" [CD] are reserved and named
8240 ?"[CD] File \#1 - Your monthly running total
8250 ?"File \#2 - Your bank balance
8260 ?"File \#3 - Your savings
8280 ?: GOSUB 800
8290 FOR I = 4 TO 20 : B$(I) = "SPARE" : NEXT
8300 B$(1) = "MONTHLY TOTAL"
8305 B$(2) = "BANK BALANCE"
8310 B$(3) = "SAVINGS"
8 3 1 5 FOR I = 4 TO R
8320 ?"FILE \# "I" NAME AMOUNT
8340 ?TAB(10) ;: INPUT B$(I) : ?"[CU]"
 TAB(30) ; : INPUT B(I)
8 3 6 0 ~ N E X T ~
8380 GOTO 100
9000 ?"[CLR] I AM ABOUT TO RECORD ALL YOUR
 DATA ONTO
9010 Z = 2
9020 ?"THE DATA TAPE
9040 ?"[CD] FIRST YOU MUST VERIFY THE
 FOLLOWING
9080 ?"[CD] TODAY'S DATE IS "N1" - "N2" - "N3
9 1 0 0 \text { GOSUB } 9 4 5 0
9120 IF RS = "Y" THEN 9220
9 1 4 0 \text { GOSUB } 9 7 6 0
9220 F=F + 1
9240 ?" [CD] THIS WILL BE FILE NO. "F
9260 ?" [CD] LAST CHEQUE WAS "CH
9 2 7 0 \text { GOSUB } 9 4 5 0
9280 IF R$ = "Y" THEN }931
9300 ?"[CD] [R] A N EW B OO K!
9310 INPUT "[CD] WHAT WAS THE LAST CHEQUE
NO." :CH
9315 Z\$ = "BANK DATA" + STR\$(F)
9320 OPEN 1,1,2,ZS
9330 FOR I = 1 TO 20 : PRINT \#1, B(I) : NEXT

```

9340 FOR I = 1 TO 20 : PRINT \#1, T(I) : NEXT
9345 FOR I = 1 TO 20 : PRINT \#1, B\$(I) : NEXT
9350 FOR I = 1 TO 12 : PRINT \#1, M\%(I) : NEXT
9360 FOR I = 1 TO 12 : PRINT \#1, S\%(I) : NEXT
9370 PRINT \#1, CH
9372 PRINT \#1, N1
9374 PRINT \#1, N2
9375 PRINT \#1, N3
9380 CLOSE 1
\(9390 \mathrm{Z}=\mathrm{Z}-1\)
9400 IF \(\mathrm{Z}=1\) THEN 9320
9410 ?" [CLR] I HAVE FINISHED
9420 ?" [3CD] BYE BYE
9430 POKE 59468,12
9440 END
9450 ?" \([R]\) ANSWER ' \(Y\) ' OR 'N'
9460 GOSUB 810
9470 RETURN
9500 ?"‘[CLR] PLEASE INSERT 'BANK DATA TAPE AND FULLY REWIND
9540 GOSUB 800
9560 INPUT "[CD] WHICH FILE NUMBER DO YOU REQUIRE" ; F
9580 ZS \(=\) "BANK DATA" + STR\$(F)
9600 OPEN \(1,1,0, \mathrm{Z} \$\)
9605 ? Z\$ "FOUND
9610 FOR I = 1 TO \(20:\) INPUT \#1, B(I) : NEXT
9620 FOR I = 1 TO 20 : INPUT \#1, T(I) : NEXT
9630 FOR I = 1 TO 20 : INPUT \#1, B\$(I) : NEXT
9640 FOR I = 1 TO 12 : INPUT \#1, M \% (I) : NEXT
9650 FOR I = 1 TO 12 : INPUT \#1,S\%(I) : NEXT
9670 INPUT \#1. CH
9672 INPUT \(=1\). N1
9674 INPUT \#1. N2
9676 INPUT \#1, N3
9680 CLOSE 1
9740 ?"[CD] THIS FILE WAS RECORDED ON "N1" "N2" - "N3
9750 ?" [CD] The last cheque was "CH
9760 ?" [CD] Please type in today's date
9770 INPUT "[R] Day"; N1
9780 INPUT " \([R]\) Month" ; N2
9790 INPUT "[R] Year"; N3
9800 RETURN
10000 ?"[CLR]
10020 FOR I = 1 TO 20
10040 GOSUB 15000:?
10060 NEXT
10080 ?" [CD] From which file are you transferring
10100 INPUT "money"; I
10120 IF I < 1 OR I > 20 OR I < > INT(I) THEN 10000
10140 ?" [CD] Into which file are you placing the
10160 INPUT "money" ; A
10180 IF \(\mathrm{A}=\mathrm{I}\) OR \(\mathrm{A}<1\) OR \(\mathrm{A}>20\) OR \(\mathrm{A}<>\operatorname{INT}(\mathrm{A})\) THEN 10140
10200 INPUT "And the amount please"; \(R\)
\(10220 \mathrm{~T}(\mathrm{I})=\mathrm{T}(\mathrm{I})-\mathrm{R}: \mathrm{T}(\mathrm{A})=\mathrm{T}(\mathrm{A})+\mathrm{R}\)
10240 ?" [CD] Have you any more transfers
10260 GOSUB 9450
10280 IF R\$ = "Y" THEN 10000
10300 GOTO 100
15000 IF I > 9 THEN 15060
15040 ?TAB(5) I ; : GOTO 15080
15060 ?TAB(4) I;
15080 ?TAB(7) B\$(I) ;
15100 RETURN


\title{
Let micro talk to micro should be a buzz phrase of the Eighties. Use this project to join the leaders in home computing with your own modem.
}

0ne of the most popular items requested by readers in our survey last year was a modem. This is not the easiest of projects to produce and the delay has been caused by our waiting until a suitable design came in from outside. The unit is both simple in design, and hence easy to construct, and easy to use. Connection to the GPO telephone system is made accoustically, this is the only way to couple private computers at the moment because of the existing regulations.

The obvious advantages of being able to communicate over telephone lines are many; it's quick and easy, it's often cheaper-especially at high speed- than sending your program by post, and, in this case, it can be used by any micro which has a serial output. Imagine, with this project you'll be able to engage your trusty machine in all sorts of interesting games such as real-time chess with your friend down in Plymouth, play Star Trek with your works mainframe, or even use some of the on-line systems such as Prestel with a little software effort. Who ever said that conversation was a dying art?
Fig.1a. The tone frequencies used in Europe and America.
\begin{tabular}{c}
\hline US Standard \\
Originate \(\left\{\begin{array}{cc}\text { Mark } & 1270 \mathrm{~Hz} \\
\text { Space } & 1070 \mathrm{~Hz}\end{array}\right.\) \\
Chan. 1 \{ \(\left\{\begin{array}{cc}\text { Mark } & 980 \mathrm{~Hz} \\
\text { Space } & 1180 \mathrm{~Hz}\end{array}\right.\) \\
Answer \(\begin{cases}\text { Mark } & 2225 \mathrm{~Hz} \\
\text { Space } & 2025 \mathrm{~Hz}\end{cases}\) \\
\hline
\end{tabular}

\section*{Needs To Be Met}

The idea for this project was born out of a need to :
a) use a terminal to access a larger computer via my home telephone,
b) exchange software with other computer users by the same means,
c) send and receive TTY signals over the air in my capacity as a Radio Amateur.
Requirement (a) meant the use of modem tones in common use so as to achieve compatability with existing equipment.

\section*{Circuit Design}

A look through the catalogue produced a Motorola integrated circuit which appeared to be capable of doing most of the work - the 6860. However, after a couple of days work I discovered that this particular IC catered only for the US standard tones. Back to Motorola who suggested their MC14412, which is the device now in use, with an added bonus of being able to work on tones in use on both sides of the Atlantic. The applications sheet which came with it gave me all the other information I needed.

Separate tones are generated for binary 0's and 1's applied at a serial data input terminal - modulation - and tones presented at the receive input are converted back to a serial data stream - demodulation.

Transmitted and received tones are also different thus permitting a Duplex link - simultaneous messages in both directions. Each end of a link must therefore be switched to opposite modes. (In the US these are called 'Originate' and


Fig.1. A block diagram of the modem system.

'Answer'.) The circuit will allow transfer of data at up to 600 Bauds. The basic structure is shown in Fig.1. and the tone frequencies are listed in Fig. 1 a .

The audio filters are necessary to clean up the incoming signals and are accommodated on a separate PCB to the rest of the circuit. This arrangement gives a degree of flexibility in that :
a) both units may be etched on to the same board if required,
b) if US and European options are needed then two filter boards and switching can easily be provided,
c) other circuits - UART, Keyboard encoder etc. are under development on the same size PCB's.

The packaging which I have adopted is to stack boards on top of each other, but there is no reason why they should not be assembled side by side to suit existing card frame systems or whatever.

\section*{Power Requirements}

Power supplies of \(+12 \mathrm{~V},-12 \mathrm{~V}\) and +5 V are usually available on even the most modest of systems. Fig.2. shows the circuit diagrams whilst the components list is over. (Resistor values in brackets for US tones).

External connections to the boards are as Fig.3. and foil layouts for them, capable of being drawn easily with a pen, are shown in Fig.5.


Fig.3. Above. This diagram shows the external connections required for the system and also gives the board overlay patterns. Top half components on the filter board are ' \(a\) ' suffixed, bottom half are ' \(b\) ' suffixed.

Fig.4. Right. A simple method of connection to the handset is by using old headphone earpieces as transducers. Accoustic isolation should be used, such as foam rubber, to prevent room noise corrupting your data.

Coupling devices of this sort directly to telephone lines requires Post Office approval of all the equipment involved, although I am assured that they are currently considering lifting this restriction soon.

The indirect method is to use what is known as acoustic coupling and this is demonstrated in Fig.4. The way in which I have been able to 'join on' to the telephone handset is to use sections of motor cycle innertube rolled up like a doughnut and glued on to the modem transducers but I am sure you can think of something equally quaint!
(A pair of 4000 ohm headphones was my source of transducers).


\section*{Operation And Test}

Having switched your modem on it can be checked by selecting "self-test", in which case the OUT data should be echoed back to your VDU or printer. (A short program will be needed to push keyboard data to the serial port and display the incoming. Many monitors can call these facilities as subroutines.)

The next stage is interesting because, although a standard does exist for signalling polarity, few users appear to stick to it. Inversion of send and receive polarities is allowed for on the PCB and one could even fit another two changeover switches! Once you have discovered which standard polarity and mode of machine is on the other end of your link then off you go.

\section*{PARTS LIST}

MODEM
RESISTORS All \(1 / 4 \mathrm{~W}, 5 \%\)
R1,5 10k
R2 \(1 \mathrm{k0}\)
R3,9 12k
R4 15 M
R6,7,12 1.8 k
R8 100k
R10 1 M0
R11 180k

CAPACITORS
C1,2 220n ceramic
C3,4 22u electrolytic

SEMICONDUCTORS
Q1,2 BC184 or similar NPN
IC1 MC14412
IC2 741
IC3 LM339
XTAL
1.000 MHz HC6U type

\section*{FILTER}

RESISTORS All \(1 / 4 \mathrm{~W}, 5 \%\)
R13a \(\quad 18 \mathrm{k}+1.8 \mathrm{k}\)
15k
\(\begin{array}{lll}\text { R14a } & 270+82 & 150+120\end{array}\)
R15a \(\quad 180 \mathrm{k}+39 \mathrm{k} \quad 150 \mathrm{k}+15 \mathrm{k}\)
R16a \(\quad 22 k+270 \quad 18 k+680\)
R17a \(1 \mathrm{k0} \quad 270+56\)
R18a \(\quad 220 \mathrm{k}+27 \mathrm{k} \quad 180 \mathrm{k}+27 \mathrm{k}\)
R19a \(\quad 10 \mathrm{k}+470 \quad 8.2 \mathrm{k}+470\)
R20a \(\quad 1.2 \mathrm{k}+220 \quad 470+150\)
R21a \(\quad 100 k+15 k \quad 68 k+27 k\)
R13b \(10 \mathrm{k}+22 \mathrm{k} \quad 15 \mathrm{k}\)
R14b \(\quad 120+10 \quad 820+27\)
R15b \(\quad 330 \mathrm{k}+12 \mathrm{k} \quad 150 \mathrm{k}+15 \mathrm{k}\)
R16b \(\quad 4.7 \mathrm{k}+33 \mathrm{k} \quad 15 \mathrm{k}+6.8 \mathrm{k}\)
R17b \(\quad 150+33 \quad 1.2 \mathrm{k}+39\)
R18b \(\quad 390 k+22 k \quad 180 k+56 k\)
R19b \(\quad 6.8 \mathrm{k}+10 \mathrm{k} \quad 8.2 \mathrm{k}+680\)
R20b \(\quad 270+33 \quad 2.2 \mathrm{k}+330\)
R21b \(\quad 150 \mathrm{k}+39 \mathrm{k} \quad 100 \mathrm{k}\)

CAPACITORS
All 10 n ceramic

SEMICONDUCTORS
All IC's type 741


Fig. 5. The two foil patterns required.


\title{
microtan 65 Small enough to learn with Big enough to work with! Smil
}

\section*{A 6502 based microcomputer.} Expands into a system. VDU alphanumeric display on un-modified domestic TV of 16 by 32 characters. Optional lower case pack making a total of 128 displayable characters. Optional chunky graphics pack ( \(64 \times 64\) pixels) Excellent documentation.

MICROTAN 65 outperforms all other small microcomputers in terms of value for money and performance. It is much easier to use as a result of the video display, intelligent keyboard socket, and very powerful monitor. The system grows to become a very useful, complete microcomputer in sensibly priced and very well designed modules. Each module is superbly packaged and with comprehensive hardware and software documentation. The Microtan users manual is A4 size, 136 pages thick, and comes beautifully bound.
TANBUG is probably the most powerful \(1 K\) monitor available. Apart from bringing the hardware alive it really does serve the purpose of programme debugging. TANBUG offers memory and register examine, modify and list, block moves, single instruction, multiple non-destructive breakpoints with ability for multiple passes, address offset calculation and many other useful features. MICROTAN 65- More power for your money!

The TANEX expansion board opens the door to a full system as well as including an abundance of features. In its minimum configuration TANEX is supplied with \(1 K\) RAM, 16 parallel \(I / 0\) lines, TTL serial \(I / 0\) port, cassette interface, \(2 \times 16\) bit counter timers, memory mapping, data bus buffering, and is fully socketed. When fully expanded TANEX offers all of the above plus a further 6 K RAM, 6 K ROM, 8 K MICROSOFT BASIC, a further 16 parallel \(1 / 0\) lines, 2 counter timers and TTL serial \(I / 0\) port, and a third serial I/0 port with RS232/20mA, full modem control and 16 different baud rates. Check the price list below to see how cheap it is to fully expand the system.
20 Way keypad- plugs into the intelligent keyboard socket and gets you going without the expense of a full ASCII keyboard. Keyboard socket will accept any ASCII keyboard.
Mini-wother board, comes complete with connectors and reset switch.

\section*{ORDER FORM:}

Qty. Microtan 65 Kit \(£ 79.35\)
Qty. Microtan 65 Assembled \(£ 90.85\)
Qty. Tanex (min.con) Kit £49.45
Qty. Tanex Assembled £60.95
Qty. Lower case pack \(£ 10.90\)
Qty. Chunky Graphics pack £ 7.50
Qty. 20 Way Keypad £ 8.95
Qty. Mini-mother board E 9.95
ALL PRICES INCLUDE VAT. Add £ 1.50 PEP Please.

\section*{EXPANSION COMPONENTS:}

Qty. Serial I/0 Kit \(£ 14.80 \quad 6552 £ 9.20\)
Qty. 2716(5V type) £28.75 2114 £ 4.80
NAME:
ADDRESS:

Superb IK monitor TANBUG IK RAM for user programme, stack and display memory.

> If you are using NAS-SYS on the Nascom 1 and you want to use a high speed cassette interface this program will solve those nasty loading problems.

This program was written to overcome a problem experienced by a number of NASCOM-1 users who were trying to use NAS-SYS with a high speed cassette interface such as the Cottis-Blandford kit from Newbear. The NASCOM-2 uses a 1200 baud interface and the CPU runs at 4 MHz . This gives the NASCOM-2 plenty of time to execute the numerous 'Restarts' in NAS-SYS between receipt of bytes at the UART. However, the NASCOM-1 runs at only 2 MHz (unless you are lucky) and the interface runs at up to 2400 baud. Thus the NASCOM- 1 is receiving data at the UART at four times the relative speed of the NASCOM-2 and unfortunately it cannot cope with this and a \(100 \%\) read error rate can quite easily be achieved!

Program Location
The program uses C80 (hex) to CF9 (hex) inclusive. As set up, the program is executed as a NAS-SYS command and not as a user-program. To use the program as a normal userprogram under the ' \(E\) ' command, loction CE6 (hex) will have to be changed from a 'jump to 51 (hex)' to a 'call 51 (hex)' followed by the normal program end instruction as explained in the NAS-SYS manual. This will displace the remainder of the program backwards by two bytes and the 'CALLs' will have to be recalculated accordingly. Execution is from C80 (hex) using the ' \(E\) ' command.

\section*{Software Operation}

The program was written on a NASCOM-1 with 32 K expansion memory using ZEAP under the T4 operating system. The program was tested on the same machine but with T4 replaced by NAS-SYS. The object code was then disassembled onto an ANADEX DP8000 using a modified version of REVAS-C.

In order to load this program from tape under NASSYS, you will have to write it to tape in the slowest format and speed available; for example the 240 baud standard NASCOM-1 format or the slowest CUTS format your interface can run at. In my experience this is a small price to pay for 2400 baud thereafter!

\section*{pROGRAM LISTING}

ADDRESS
OPCODE LABELS INSTRUCTION



OCE1 20 AO
OCE3 EF
OCE4 1800

OCEG C3 5100
OCE9 ES
OCEA B5
OCEB CS
OCEC CD 8100
OCEF 3805
OCF1 CD 8800
OCF4 30 FG
OCF' C1
OCF7 [11
OCF8 E1
OCFA C9

JR NZ, LOC83
LOCE3 RST £28
DB \(£ 18, £ 00\)

LOCE6 JF L0051
LOCE9 FUSH HL
FUSH DE
FUSH ECC
CALL LOOB1
JF C,LOCF6
CALL LOOB8
JR NC. LOCEC
POP BC
FOF DE
FOP HL
RET


\title{
INSTANT SOFTWARE
}

CT Software is a unique service that we offer to our readers. Each program comes on a high quality tape packaged with full documentation.

Read down the list of titles-you'll find a few suprises and some things for which you have offered sacrifices on a stone at dawn before now. All are checked and fully quaranteed, any complaints and we'll replace by return of post.

We think this is a revolution in reader service and one that will change the way you use your computer. So why not try us out ?


All orders and enquiries to:- CT software, 4 Morgan Street, London E3 5AB.

All programs except 0013R are \(£ 6.75\).

\section*{TRS 80 Level 1}

BUSINESS PACKAGE I Keep the books for a small business with your TRS-80 Level I 4K. The six programs included are:

General Information - The instructions for using the package.

Fixed Asset Control - This will give you a list of your fixed assets and term depreciation.

Detail Input - This program lets you create and record your general ledger on tape for fast access.

Month and Year to Date Merge - This program will take your monthly ledger data and give you a year to date ledger.

Profit and Loss - With this program you can quickly get trial balance and profit and loss statements.

Year End Balance - This program will combine all your data from the profit and loss statements into a year end balance sheet.
With this package, you can make your TRS. 80 a working partner.
Order Code. 0017R
PERSONAL FINANCE I Let your TRS-80 handle all the tedious details the next time you figure your finances:

Personal Finance 1 - With this program you can control your incoming and outgoing expenses.

Checkbook - Your TRS-80 can balance your checkbook and keep a detailed list of expenses for tax time.

This handy financial control package for the home requires only a TRS-80 Level I 4 K . Order No. 0027R 5.75.

\section*{Level 1\&2}

AIR FLIGHT SIMULATION Turn your TRS80 into an airplane. You can practice takeoffs and landings wiht the benefit of full instrumentation. This one-player simulation requires a TRS- 80 Level I \(4 K\), Level II 16 K . Order No. 0002R
SPACE TREK II rrotect the quadrant from the invading Klingon warships. The Enterprise is equipped with phasers, photon torpedoes, impulse power, and warp drive. It's you alone and your TRS-80 Level I 4 K , Level II 16 K against the enemy. Order No. 0002R
SANTA PARAVIA AND FIUMACCIO Become the ruler of a medieval city-state as you struggle to create a kingdom. Up to six players can compete to see who will become the King or Queen first. This program requires a 16K TRS-80 Level I \& II. Order No. 0043R

ELECTRONICS I This package will not only calculate the component values for you, but will also draw a schematic diagram, too. You'll need a TRS-80 Level I 4K, Level II 16K to use:

Tuned Circuits and Coil Winding Design tuned circuits without resorting to cumbersome tables and calculations.

555 Timer Circuits - Quickly design astable or monostable timing circuits using this popular IC.

LM 381 Preamp Design - Design IC pre-
amps with this low-noise integrated circuit. This package will reduce your designing time and let you build those circuits fast. Order No. 0008R
HAM PACKAGE I This versatile package lets you solve many of the commonly encountered problems in electtronics design. With your Level I 4 K or Level II 16K TRS-80, you have a choice of:

Basic Electronics with Voltage Divider Solve problems involving Ohm's Law, voltage dividers, and RC time constants.

Dipole and Yagi Antennas - Design antennas easily, without tedious calculations. This is the perfect package for any ham or technician. Order No. 0007R

\section*{Level 2}

TRS-80 UTILITY I Ever wonder how some programmers give their programs that professional look? Instant Software has the answer with the TRS-80 Utility I package. Included are:

RENUM - Now you can easily renumber any Level II program to make room for modification, or to clean up the listing.

DUPLIK - This program will let you duplicate any BASIC, assembler, or machinelanguage program, verify the data, merge two or more programs into one data block, and even copy Level I programs on a Level II machine. For TRS-80 Level II 16K. Order No. 0081 R
TRS-80 UTILITY 2 Let Instant Software change the drudgery of editing your programs
into a quick, easy job. Included in this package are

CFETCH - Search through any Level II program tape and get the file names for all the programs. You can also merge BASIC programs, with consecutive line numbers, into one program.

CWRITE - Combine subroutines, that work in different memory locations into one program. This works with BASIC or machinelanguage programs and gives you a general checksum.
This package is just the thing for your TRS. 80 Level II 16K. Order No. 0076 R
SPACE TREK IV Trade or wage war on a planetary scale. This package includes:

Stellar Wars - Engage and destroy Tie fighters in your attack on the Death Star. For one player.

Population Simulation - A two-player game where you control the economy of two neighbouring planets.
You decide, guns or butter, with your TRS-80 Level II 16K. Order No. 0034 K
RAMROM PATROL/TIE FIGHTER/KLINGON CAPTURE Buck Rogers never had it so good. Engage in extraterrestrial warfare with:

Ramrom Patrol - Destroy the Ramron ships before they capture you.

Tie Fighter - Destroy the enemey Tie fighters and become a hero of the rebellion.

Klingon Capture - You must capture the Klingon ship intact. It's you and your TRS-80 Level II 16K battling across the galaxy. Order No. 0028R
CARDS This one-player package will let you olay cards with your TRS-80 - talk about a soker face!

Draw and Stud Poker - These two programs will keep your game sharp.

No-Trump Bridge - Play this popular game with your computer and develop your strategy.
This package's name says it all. Requires a TRS-80 Level II 16K. Order No. 0063R

HOUSEHOLD ACCOUNTANT Let your TAS-80 help you out with many of your daily mousehold calculations. Save time and money with these fine programs:

Budget and Expense Analysis - You can :hange budgeting into a more pleasant job with this program. With nine sections for income and expenses and the option for oneand three-month review or year totals, you can see where your money is going.

Life Insurance Cost Comparison - Com zare the cost of various life insurance policies. = nd out the difference in price between term and whole life. This program can store and Isclav uD to six different results.

Dasebook - Record all those important canes in your life for fast, easy access. The proyrar has all major holidays already incluted.
2: ra need is TRS-80 Level II 16K. Order Ne CowsR
FIVA~CIAL ASSISTANT Compute the fig. ures for a wide variety of business needs. mou ded are

Desreciation - This program lets you figure decreciation on equipment in five different nsts.

Loan A-ortization Schedule - Merely enter a few essential factors, and your TRS-80 will display a complete breakdown of all costs and scheduies of payment for any loan.

Financier - This program performs thirteen common financial calculations. Easily handles calculations on investments, depreciation, and loans.

1\% Forecasting - Use this simple program
to forecast sales, expenses, or any other historical data series.
All you need is a TRS-80 Level II 16K. Order No. 0072 R

\section*{PET}

CASINO I These two programs are so good, you can use them to check out and debug your own gambling system!

Roulette - Pick your number and place your bet with the computer version of this casino game. For one player.

Blackjack - Try out this version of the popular card game before you go out and risk your money on your own "surefire" system. For one player.
This package requires a PET with 8 K . Order No. 0014P
CASINO II This craps program is so good, it's the next best thing to being in Las Vegas or Atlantic City. It will not only play the game with you, but also will teach you how to play the odds and make the best bets. A one player game, it requires a PET 8K. Order No. 0015P

\section*{CHECKERS/BACCARAT Play two old fav-} ourites with your PET.

Checkers - Let your PET be your everready opponent in this computer-based checkers program.

Baccarat - You have both Casino- and Blackjack-style games in this realistic program.
Your PET with 8 K will offer challenging play anytime you want. Order No. 0022P
MIMIC Test your memory and reflexes with the five different versions of this game. You must match the sequence and location of signals displayed by your PET. This one-player program includes optional sound effects with the PET 8K. Order No. 0039P
TREK.X Command the Enterprise as you scour the quadrant for enemy warships. This package not only has superb graphics, but also includes programming for optional sound effects. A one-player game for the PET \(8 K\). Order No. 0032P
TURF AND TARGET Whether on the field or in the air, you'll have fun with Turf and Target package. Included are:

Quarterback - You're the quarterback as you try to get the pigskin over the goal line. You can pass, punt, hand off, and see the results of your play using the PET's superb graphics.

Soccer II - Play the fast-action game of soccer with four playing options. The computer can play itself, play a single player, two players with computer assistance, and two players without help.

Shoot - You're the hunter as you try to shoot the bird out of the air. The PET will keep score.

Target - Use the numeric keypad to shoot your puck into the hom position as fast as you can.
To run and score all you'll need is a PET with 8K. Order No. 0097P
ARCADE I This packaye combines an exciting outdoors sport with one of America's most popular indoor sports:

Kite Fight - It's a national sport in India. After you and a friend have spent several hours manoeuvering your kites across the screen of your PET, you'll know why!

Pinball - By far the finest use of the PET's exceptional graphics capabilities we've
ever seen, and a heck of a lot of fun to play to boot.

\section*{Requires an 8K PET. Order No. 0074P}

ARCADE II One challenging memory game and two fast-paced action games make this one package the whole family will enjoy for some time to come. Package includes:

UFO - Catch the elusive UFO before it hits the ground!

Hit - Better than a skeet shoot. The target remains stationary, but you're moving all over the place.

Blockade - A two-player game that combines strategy and fast reflexes.
Requires 8K PET. Order No. 0045P
DUNGEON OF DEATH Battle evil denons, cast magic spells, and accumulate great weal th as you search for the Holy Grail. You'll have to descend into the Dungeon of Death and grope through the suffocating darkness. If you survive, glory and treasure are yours. For the PET 8K. Order No. 0064 P

\section*{Apple}

MATH TUTOR I Parents, teachers, students, now you can turn your Apple computer into a mathematics tutor. Your children or students can begin to enjoy their math lessons with these programs:

Hanging - Perfect your skill with decimal numbers while you try to cheat the hangman.

Spellbinder - Cast spells against a competing magician as you practice working with fractions.

Whole Space - While you exercise your skill at using whole numbers your ship attacks the enemy planet and destroys alien spacecraft.
All programs have varying levels of difficulty. All you need is Applesoft II with your Apple II 24 K . Order No. 0073A
MATH TUTOR II Your Apple computer can go beyond game playing and become a mathematics tutor for your children. Using the technique of immediate positive reinforcement, you can make math fun with

Car Jump - Reinforce the concept of calculating area while having fun making your car jump over the ramps.

Robot Duel - Practice figuring volumes of various containers while your robot fights against the computer's mechanical man

Sub Attack - Take the mystery out of working with percentages as your submarine sneaks into the harbor and destroys the enemy fleet.
All you need is Applesoft II with your Apple 11 and 20 K . Order No. 0098 A
GOLF Without leaving the comfort of your chair, you can enjoy a computerized 18 holes of golf with a complete choice of clubs and shooting angles. You need never cancel this game because of rain. One or two players can enjoy this game on the Apple with Applesoft II and 20K. Order No. 0018A
BOWLING/TRILOGY Enjoy two of America's favorite games transformed into programs for your Apple

Bowling - Up to four players can bowl while the Apple sets up the pins and keeps score. Requires Applesoft 11.

Trilogy - This program can be anything from a simple game of tic-tac-toe to an exercise in deductive logic. For one player.
This fun-filled package requires an Apple with 20K. Order No. 0040A

\title{
After flashing our LED's last month we take a look at how light can be used to trigger your micro's responses.
}

Last month we saw how the system could produce outputs at the I/O device ports or at one of the Flag terminals when instructed to do so by a program. This is capable of producing pretty effects with coloured lights, and thought it could sometimes be useful in letting you know which stage of a program has been reached, the output facility would be even more useful if it could be triggered in response to some external event. For example, the microprocessor would cause an alarm bell to sound when an intruder interrupts a beam of light. This may appear to be : rather unsophisticated application for our revolutionary micro-chip, an ordinary relay would do the job just as well. But this could be just a small part of a complete security system operating under microprocessor control. The complete system might incorporate not only light-beam intru-der-detectors, but door-switches, pressure-pads, fire detectors, smoke detectors and so on; it might be switched off automatically during working hours; it might be transferred to reserve batteries in the event of mains power failure. For the moment, let us return to the simpler problem of how the system can be made to produce an output following a given input.

\section*{Acting In Response}

Inputs are received by the I/O device, after lines have been designated as inputs, the way to program this is described later. The SC/MP also has two terminals permanently operating as inputs: these, SENSE A and SENSE B, give direct access to the MPU itself and their state is registered in bits 4 and 5 of status register. Programs for reading and using this information are given later.

As an example of the kind of input that a system might receive, we are taking a simple interface that responds to the amount of light falling on it. This device (Fig.1) gives high output at Output 1 when the phototransistor is in bright light, and gives a low output when light is low. Thought the light level may fade gradually, the switch-over from high to low level output takes place sharply. This is the effect of using Schmitt trigger gates (IC1); a further point is that with slowly falling light levels, the output will not change back again to high should there be a slight but temporary increase in the amount of light. A substantial increase is needed before output becomes high again. This action called hysteresis, is also found when light levels are increasing, and gives the interface a sharp snap-action when operating on borderline light intensities that may be fluctuating slightly. The effect of increasing the amount of light falling on the phototransistor is to increase the amount of current flowing through it from R2. As current increases, potential at point A falls, giving a low input to gate 1. This is a NAND logic gate wired as an INVERT gate, so its output then becomes high. With low light intensity, TR1 is almost switched off, potential at A is high, and the output of gate 1 is low. The output of gate 1 (output 1) may be used direct as an input to the microprocessor or \(1 / O\) device. It is sometimes con-


Fig.1. The circuit diagram for the light activated switch. A sensitivity control may be fitted (see text for details).
venient to have an inverted output and this is obtained at no extra cost by using the other gate in the IC. Output 2 therefore goes low in high light, and high in low light.

The exact level at which the change from high to low occurs depends on the value of R1. To operate under lowlight conditions (dusk, dawn, moderate room lighting), R1 should be about 100 k . To operate under bright daylight, R2 should be about 10 M , or can even be omitted altogether. If you wish to set the interface to respond at a particular light level, use a 2 M variable resistor in place of R 1 .


Fig.2. Veroboard layout for the interface unit.

\section*{Construction}

Fig.2. shows the layout of the circuit board, and construction presents no problem. Soldercon pins were used as terminals in the prototype so that the device could quickly be connected in a variety of ways to other devices. If it is to be used as part of a permanent installation, these could be replaced by ordinary terminal pins. The legs (also made from pins) can be omitted if the board is to be permanently mounted in, say, a small case with a hole to admit a beam of
light. Although we often refer to a beam of light, there is no need to employ a beam as such.

In an alarm-system application the source of light can be a distant street-lamp, a room light, or a sunlit lightcoloured wall The device will function whenever someone (or the cat!) passes between the source of light and the lens of the phototransistor. The lens makes the device fairly directional.

\section*{Detecting An Input}

Program A shows how the state of SENSE A input to SC/MP may be monitored. The contents of status register are copied to accumulator and are then ANDed with 00010000 . If bit 4 is low, the result is 00000000 ; if bit 4 is high, the result is 00010000 . In the first even the program jumps back to examine the status again. In the second event it sets Flag 3 high causing an LED to light (assuming you have the LED interface connected). Note that this program causes a response when input goes high - when a light-beam is broken (if you use Output 2 of the interface), or when a light is shone on the phototransistor (if you use Output 1). Thus you can use this program to detect an intruder or the onset of dusk, or in the other sense you can use it to tell you when the headlamps of a car are approaching the house at night or that the house is on fire! Programs \(B\) and \(C\) are variations on Program A, having different action when triggered.

The use of the INS8154 Input/Output is illustrated by programs D, E and F for the 6502 MPU, as used in Acorn. Programs for the same device in the Mk-14 microcomputer could operate along similar lines. The procedure for using this device for outputting data was described in last month's issue, and a table of addresses was given. To use this device for inputs we adopt a similar procedure.
1) Determine which lines are to be inputs and which are to be outputs.
This is done by making up a byte in which ' 0 ' represents 'input' and ' 1 ' represents 'output'. Thus the byte 11111110 means that all lines are to be outputs except line 0 . If this byte is stored in output definition register \(B(O D B)\), which is at address 0923 in Acorn (0A23 in Mk-14), lines B1 to B7 of Port B become outputs and only B0 becomes an input. Similarly we could address a byte to 0DA (0922, 0A22) to determine the functions of the lines of Port A.
2) Read the input at a given line.

For SC/MP the instruction is 'load' followed by one of the bit addresses that are also used for setting or resetting outputs. For example, address XXOA means 'clear line B2' and address XX1A means 'set line B2' when we are working with outputs. When a line has been designated as an input we can use either 'load \(\mathrm{XX0A}\) ' or 'load \(\mathrm{X} \times 1 \mathrm{~A}\) ' when we want to read the value at the B2 input. With SC/MP the accumulator then contains either 0000 0000, if the input was low, or 1000000 , if the input was high. The state of bit 7 can then be easily tested by 'jump if positive'; 00000000 causes a jump, 10000000 does not. With the 6502 the procedure is different in detail. The 'BIT' instruction is used, followed by the address of the line to be read. If the input was low, the \(N\) flag in the microprocessor is then made low (0); if the input was high, the N flag is made high (1). The state of the N flag is then tested using either 'branch if plus' (BPL) or 'branch if minus' (BMI), whichever is more convenient. Programs D and E illustrate the use of these routines.

Although it is not used in the programs given here, it is also possible to read inputs in parallel. The procedure is the same as for setting outputs in parallel, as described last month, using the Port \(\mathrm{A}(\mathrm{X} \times 20)\) or Port \(\mathrm{B}(\mathrm{X} \times 21)\) registers.

\author{
CUTS IN COPPER STRIPS AT D19, E19, F19, \\ G19, H19 \& J19 (NOT AT I19) \\ ALSO AT 112 \\ SOLDER BLOBS JOIN STRIPS AT C21 TO D21 \\ D16 TO E16 G16 TO H16 E21 TO F21 H21 TO 121
}

Fig.3. Veroboard track connections and breaks. See Fig. 2 for the layout pattern.

Use a 'load' instruction to transfer the data to accumulator. Particular combinations of high and low inputs may then be looked for by suitable logical operations.

\section*{Other Kinds Of Input}

As far as the MPU is concerned a high input is a high input and nothing more. Only the operator knows what device is connected to the input and what a high or low input value means in terms of the world outside. The MPU must be programmed to make the appropriate response. It follows that these programs can also be used to process inputs from other sources. The pressing of a button at the front-door or the breaking of a contact on a windowframe can equally well be made to put these programs into action. In later episodes we shall find several more ways to use these basic programs. We have not finished with the light-level interface yet, either. It can do more than detect intruders or the cat; it can be used to count objects or people as they pass by, it can be used in a lap-timer. Programs for these applications will appear in the next part. But, before we get to these, here is a way to extend the ability of the microprocessor on its output side. Although the LEDs are ideal as indicators of the state of outputs and are very useful when we want to test or develop programs that produce output changes, ultimately we need to be able to control devices that use far greater power. Here are some ways of doing this.

\section*{Driving Relays}

A relay is simple to instal and to oeprate, though it is a relatively expensive item to use in any quantity. Its great advantage is that it can handle large currents and is capable of switching alternating current, whereas transistor switching circuits can usually handle only direct current. If mains power is to be switched - as in frequently the case in applications in the home, then a relay is usually the best method of control.

The simplest type of relay to work with is the kind specially made for operate from TTL outputs. Fig. 4 shows how a single TTL IC can control up to 4 separate relays. The NAND gates are being used as inverters, so the microprocessor outputs need to be low to energise the relay coil. Relays of this type are available with either a simple on-off switch, or a single change-over switch, both forms with either single or double pole. The mechanism is sealed in a small case the same size and shape as a TTL IC and provided with 14 terminal pins, dual-in-line. Thus it fits in neatly among the ICs on the circuit-board. Such relays can handle currents up to about 0.5 A at voltages up to 100 V DC they are very suitable for projects requiring the control of low-voltage lighting ( 12 V or 24 V supply) or for other low-voltage applications such as operating the points of a model railway system, and controlling low-voltage motors. With a few light-level interfaces to detect the position of the train and a few relays to
control the points and locomotive, you have the beginnings of an automated model railway. There is also a series of reed relays slightly larger than the DIL form, and considerably cheaper, that fill the same function; the \(6-9 \mathrm{~V}\) range of these can be operated by TTL.


Fig. 4 diagram for the relay interface unit. It is capable of driving any TTL relay for tow voltage control.

Figure 4 shows the relays being controlled by NAND gate outputs but they can, of course, be controlled by any TTL output. If you need to operate six relays, it would be more economic to use the 7404 hex inverter.

For certain applications it may be more convenient to use the 74118 hex bistable IC, this can drive six relays; each is energised when the bistable to which it is connected receives a low pulse to its input. It stays energised until a low impulse comes to the reset input of the IC (from a seventh output line) whereupon all bistables are reset and all relays de-energised. Apart from these variations we need not consider any further use of TTL logic, for most of the logical operations will be done by the microprocessor, not by external circuits.

To switch mains current or large DC currents we need a more substantial relay. The current required for energising the coil cannot normally be safely derived from a TTL output. Instead we use a transistor to switch the relay on and off (Fig.5). When the microprocessor output goes high, the transistor is switched on; current flows through it, energising the relay coil. The source of current can be the +5 V power rail of the microprocessor system, especially if only one or two relays are to be driven. However, this could present an excessive load on the voltage regulator of the system and there is certainly no need for a regulated supply for the relay coil. Power may be derived directly from the positive terminal of the power-pack, provided that this is rated sufficiently high to supply both the microprocessor boards and the relays. The fact that the unregulated power pack supply is usually a few volts higher than +5 V makes no difference. Alternatively, an entirely separate power source may be used - another power-pack, or a battery - but if so, the 0 V line of this source must be connected to the 0 V line of the microprocessor system. It is also permissible to use a source of higher voltage, should the relay coil require it, but do not exceed the maximum permissible collector-emitter voltage ( \(\mathrm{V}_{\mathrm{CEO}}\) ) of the transistor. For the \(\mathrm{ZTX} 300, \mathrm{~V}_{\text {CEO }}=25 \mathrm{~V}\).

Both Fig. 4 and Fig. 5 show a diode connected across


Fig. 5. Single relay control with a transistor driver. This avoids having to use the micro supply to power the relay.
the terminals of the relay. A relay is an inductive load, so its coil generates a large reverse current when the supply to it is turned off. This large current can damage the switching transistor and possibly other parts of the circuit. The diode avoids this hazard by discharging any currents as they occur. Some types of DIL relay have the diode already built-in, but it is as well to check that this is so before omitting the diode from your circuit.

The current that is switched by the relay normally comes from an entirely separate source - most often the mains. There should be no electrical connection between the contacts of the relay and the relay coil. When wiring connections to the contacts remember that mains currents can shock or even kill. Unless you are absolutely certain of what you are doing and how to wire mains supplies safely, call in experienced advice.

\section*{Transistor Switching}

The relay of Fig. 5 could be replaced by any other device that requires a relatively small current (up to 60 mADC ). This can be switched directly by the transistor, without the need for a relay and with consequent saving in expense, space and circuit complexity. Filament lamps rated at 60 mA can be switched in this way. As before, the power source can be independent, so lamps rated at 12 V or 24 V can be used. A special type of buzzer is available (Maplin Electronic Supplies) that requires only 15 mA and operates from 6 V ; this emits a very loud noise and is highly suitable for alarm systems or as an indicator. Being a solid-state device, it is non-inductive so, when using this (or filament lamps), the discharging diode, D1, is not required.

With relays and transistors as switches there is really no limit to the number and kinds of electrical device that your microprocessor can control.

In the next gripping episode we will be asking "Do you ever talk to your micro"? Probably you do at times, but does it hear you? After attaching our next interface your micro will be able to hear as well as see. We will also give some more applications for the light-level interface.

Program A: To set Flag 3 when a light beam is broken: use output 2 from light-level interface. For SC/MP (relocatable)
0F20 06
A : CSA

0F21 D4 10

\section*{MICROLINK}
\begin{tabular}{lll} 
OF23 & 98 & FB \\
0F25 & C4 & 04 \\
0F27 & 07 & \\
0F28 & \(3 F\) &
\end{tabular}

JZ to A if Sense A is low; continue if high
B : LDI '04’ ( \(=0000\) 0100)
CAS sets Flag 3 bit XPPC P3 return to monitor

Program B: To set Flag 3 for as long as the light-beam is broken. For SC/MP (relocatable)

0F20-0F27, as in Program A
\begin{tabular}{llll} 
0F28 & 8 F & FF & DLY to give \(1 / 4\) second flash \\
0F2A & C4 & 00 & LDI t00 \\
0F2C & 07 & & CAS clear flag bits \\
0F2D & 90 & F1 & JMP to A repeat sequence
\end{tabular}
Program C: To flash Flag 3 when a light beam is broken. For
SC/MP (relocatable)

Progra- E: To set output B3 for as long as the light-beam is broken. For 6502 (relocatable)
\(0200-0211\), as in Program D
021 ₹ \(2 \mathrm{C} \quad 08 \quad 09 \quad \mathrm{~B}\) : BIT read state of B0 input;
\(011530 \mathrm{FB} \quad \mathrm{BMI}\) if \(\mathrm{N}=1\) to B to wait
0217 SD OA 09 STA \# beam restored, \(N=0\), so clear output B3
\(021 \mathrm{~A} 404 \mathrm{FF} \quad\) JMP to monitor
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{0200-0211, as in Program D} \\
\hline 0212 & A0 & 30 & LDY \# ‘ 30 '; value determines flashing rate \\
\hline 0214 & 20 & CD FE B & : JSR to WAIT \\
\hline 0217 & 88 & & DEY counting loops \\
\hline 0218 & 10 & FA & BPL to B, if Y still positive \\
\hline 021A & 8D & 0A 09 & STA clear B3 output \\
\hline 021 D & A0 & 30 & LDY \# '30' restore counter Y \\
\hline 021 F & 20 & CD FE C & :JSR to WAIT \\
\hline 0222 & 88 & & DEY counting loops \\
\hline 0223 & 10 & FA & BPL to C, if Y still positive \\
\hline 0225 & 4 C & OF 02 & JMP to 020F, to repeat flash \\
\hline
\end{tabular}

Program G: To display a message when a light-beam is broken. For SC/MP (relocatable)
\begin{tabular}{|c|c|c|c|}
\hline OFIF & & & = counter, k \\
\hline OF20 & 06 & A & :CSA \\
\hline 0F21 & D4 10 & & ANI '10' picking out the Sense A bit \\
\hline 0F23 & 98 FB & & JZ to A if Sense A is low; continue if high \\
\hline 0F25 & C4 0D & B & :LDI '0D' pointing P1 to display \\
\hline OF27 & 35 & & XPAH P1 (0D00) \\
\hline 0F28 & 31 & & XPAL P1 \\
\hline 0F2B & C 4 0F & & LDI '0F' pointing P'2 to message \\
\hline 0F2D & 36 & & XPAH P2 (0F40) \\
\hline 0F2E & C4 40 & & LDI '40' \\
\hline 0F30 & 32 & & XPAL P2 \\
\hline 0F31 & C4 08 & & LDI '08' \\
\hline 0F33 & C8 EB & C & : ST in counter, k \\
\hline 0F35 & C6 01 & & LD@P2+1 get first character of message \\
\hline 0F37 & CD 01 & & \(\mathrm{ST} @ \mathrm{P} 1+1\) store it in first display position \\
\hline 0F39 & B8 E5 & & DLD k becomes k-1 \\
\hline 0F3B & 9C F6 & & JNZ to C to get and store next character \\
\hline OF3D & 90 E6 & & JMP to B to repeat display sequence \\
\hline
\end{tabular}

\section*{Message table 0F40 to 0F47}

0 F40 \(\quad 00 \quad 50 \quad 7 \mathrm{~B} \quad 6 \mathrm{~F} \quad 54 \quad 5 \mathrm{~F} \quad 5 \mathrm{E} \quad 00\)
\(=\) counter, k
ANI '10' picking out the Sense A bit
JZ to A if Sense A is low; continue if high
3 :LDI 'OD' pointing P1 to display
(ODOO)
XPAL P1
DI OF pointing P 2 to message
LDI '40'
XPAL P2
LDI '08'
LD@P2+1 get first character of message
prit store it in first display pLDk
LD k becomes k-1
character
JMP to \(B\) to repeat display sequence

\section*{pARTS LIST}
Resistors All 0.125 W, carbon, 5\% or \(10 \%\).
R1 see text
R2 270k
Semiconductors
\(\begin{array}{ll}\text { TR1 } & \text { BPX25, phototransistor } \\ \text { IC1 } & 7413 \text { duel 4-input Schmitt } \\ & \text { trigger NAND }\end{array}\)
```

```
Resistors All 0.125 W, carbon, 5% or
```

Resistors All 0.125 W, carbon, 5% or
10%.
10%.
R1 see text
R1 see text
R2 270k
R2 270k
Semiconductors
Semiconductors
TR1 BPX25, phototransistor
TR1 BPX25, phototransistor
IC1 }7413\mathrm{ duel 4-input Schmitt
IC1 }7413\mathrm{ duel 4-input Schmitt
trigger NAND

```
    trigger NAND
```

Program F: To flash B3 when a light beam is broken. For 6502 (relocatable)

DPTELED
 COMPUCOLOR II

Pay for Mod. 3-Get Mod. 4 Pay for Mod. 4-Get Mod. 5

PET
Up to $£ 75$ free Software with new Pet 4 K to 8 K Conversion $£ 79^{\circ}$
8K to 32 K Conversion (from) only $\mathbf{8 2 1 0}{ }^{*}$ Petsoft, Gemsoft and Landsler Programs 'Tax Free'

APPLE
$£ 75$ free Software with Apple

SHARP

Up to $\mathbf{£ 7 5}$ free Sortware with New Sharp
Teletext Convertor (connects like VCR-instantly) £199.95* Most makes bought/sold/constructed

* excluding V.A.T.

RAYLEIGH (0268) 774089 to 8 pm .

RELIANT EXPRESS DELIVERIES

*Fast 24 hour service
*Vehicles to suit your transport needs, from 22 cwt Luton's to Escort Estates

FOR DETAILS PHONE DUUSTABLE (0582) 62932605660

COLOUR YOUR NASCOM!

DAZZLING COLOUR GRAPHICS FOR NASCOME 1 \& 2

Genuine bit-addressable "pixel" system for straightforward programming of pictorial or mathematical functions.
8 Colour display plus 8 colour independent background facility. Full documentation with FREE SOFTWARE: powerful sub-routines for vector generation, demonstration program for animated effects. All runs in Nascom 1 without expansion. Complete with UHF Colour Modulator for operation with normal colour TV set. Superior design allows connection to most other microprocessor systems - send us diagrams etc of your $\mathrm{b} \& \mathrm{w}$ video circuitry for free advice. Don't be fooled by the price: this is a top quality product which will transform your computer.
NOW AVAILABLE FOR $f 45$ inclusive of VAT LIMITED PERIOD AT 243 and postage.

WILLIAM

Dower House, Billericay Road vana Herongate Brentwood Essex CM13 3SD
Telephone: Brentwood (0277) 810244

The professional scopes you've always needed.

When it comes to oscilloscopes, you'll have to go a long way to equal the reliability and performance of Calscope

Calscope set new standards in their products, as you'll discover when you compare specification and price against the competition

The Calscope Super 10 , dual trace 10 MHz has probably the highest standard anywhere for a low cost general purpose oscilloscope. A 3\% accuracy is obtained by the use of stabilised power supplies which cope with mains fluctuations

The price $£ 219$ plus $£ 17.52$ VAT
The Super 6 is a portable 6 MHz single beam model with easy to use controls and has a time base range of $1 \mu \mathrm{~s} 10100 \mathrm{~ms} / \mathrm{cm}$ with 10 mV sensitivity. Price E 162 plus £ 12.96 VAT

CALSCOP'E DISTRIBUTED BY
Maplin Electronics Supplies Ltd.

P.O. Box 3

Rayleigh, Essex.
Tel: 0702715155
Mail Order
Watford Electronics,
33-35 Cardiff Road.
Watford. Herts.
Tel: 092340588

As an exercise a couple of weeks ago I set myself the problem of writing an unusual short non-game program which would be of use to a large number of people. The result of my labours is enclosed together with an example of a running.

Anyone who has ever learnt a foreign language will know how tedious vocabulary learning can become. Furthermore the system of working through a list of vocab has the disadvantage of also teaching you the order in which the words occur, so although you might be able to get full marks testing yourself on each word in turn you might not be able to remember the foreign equivalent of a word chosen randomly from the list.

Software Details

My program contains three looped routines (which may be exitted by entering "B" for break). The first routine allows the user to teach the computer new vocabulary, the second tests the user on each word in turn (this ensures that every word is tested before going on to the third routine), and the third chooses words at random and should be used to polish off previously learnt vocab thus eliminating the order problem described above.

This method of learning, apart from being more thorough than the conventional method, is also considerably faster and less laborious. Interested readers might also like to extend the program's facilities for example by adding some sort of classification system so that the user may choose to be tested on all vocab related to a particular subject eg. shops, animals, professions etc.

Program Example

An example of the program being run (in this case the data file is initially empty although this need not be so).

RUN

WHAT LANGUAGE ARE YOU LEARNING? GERMAN LEARN, SEQUENTIAL TEST, RANDOM TEST OR END (L,S,R OR E)? L
ENGLISH WORD/PHRASE? POTATO
GERMAN EQUIVALENT? DIE KARTOFFEL
ENGLISH WORD/PHRASE? ENTRANCE
GERMAN EQUIVALENT? DER EINGANG
ENGLISH WORD/PHRASE? LIMITATION
GERMAN EQUIVALENT? DIE BESCHRA "NKUNG
ENGLISH WORD/PHRASE? B
LEARN, SEQUENTIAL TEST, RANDOM TEST OR END (L,S,R OR E)? S
WHAT IS THE GERMAN FOR POTATO? DIE KARTOFFEL
CORRECT!
WHAT IS THE GERMAN FOR ENTRANCE? DER
EINGANG
CORRECT!
WHAT IS THE GERMAN FOR LIMITATION? B
LEARN, SEQUENTIAL TEST, RANDOM TEST OR END
(L,S,R OR E)? R
WHAT IS THE GERMAN FOR ENTRANCE? DIE
EINGANG
NO! - THE GERMAN FOR ENTRANCE IS DER
EINGANG
WHAT IS THE GERMAN FOR POTATO? B
LEARN, SEQUENTIAL TEST, RANDOM TEST OR END
(L,S,R OR E)? E
READY

Note: The definite article should be included with foreign nouns, and accents and umlauts etc. should be written after the corresponding letter eg. the French word for pupil, eleve, should be written thus: E/LE\VE.

LINGO.BAS

10 !! rROGRAMME TO AID VOCABULARY LEARNING!!

60 PRINT:INPUT"WHAT LANGUAGE ARE YOU LEARNING";L\$
70 PRINT:INPUT"LEARN, SEQUENTIAL TEST, RANDOM TEST OR END (L,S,R OR E)"; AS: GOTO 300
80 !!
LEARN ROUTINE
!!
90 OPEN "LINGO.DAT" AS FILE 1
100 INPUT LINE \#1,A\$: GOTO 100
110 PRINT:INPUT"ENGLISH WORD/PHRASE"; E\$: $A \$=E \$$: GOSUB 290
120 PRINT L $\$$;"EQUIVALENT"; : INPUT F\$: A\$ = F\$: GOSUB 290
130 PRINT \#1,E\$: PRINT \#1,F\$: GOTO 110
140 !! SEQUENTIAL TEST ROUTINE
!!
150 OPEN "LINGO.DAT" AS FILE 1
160 INPUT LINE \#1,E\$: INPUT LINE \#1,F\$
170 PRINT: PRINT "WHAT IS THE";L\$;"FOR";E\$; ; INPUT A\$: GOSUB 290
180 IF A\$ = F\$ THEN PRINT "CORRECT!" : GOTO 160
190 PRINT "NO! - THE";L\$;"FOR";E\$;"IS";F\$: GOTO 160
200 $=\operatorname{INT}($ RND*N/2)*2+1
INPUT LINE \#1,E\$ FOR I = 1 TO R : INPUT LINE \#1,FS
250 PRINT:PRINT "WHAT IS THE";L\$;"FOR";E\$; : INPUT A\$: CLOSE 1 : GOSUB 290
IF AS = F\$ THEN PRINT "CORRECT!"' : GOTO 230
PRINT "NO! - THE";L\$;"FOR";E\$;"IS";F\$: GOTO 230
!! CROSSROADS ROUTINE !!
290 IF INSTR (I,"BELRS",A\$) = 0 THEN RETURN ELSE CLOSE 1
300 ON INSTR (I,"BELRS",A\$) GOTO 70,350,90,210, 150
!! ERROR ROUTINE
IF ERL $<>100$ OR ERR $<>11$ THEN CLOSE 1 IF ERR $<>11$ GOTO 350
IF ERL = 100 THEN RESUME 110 ELSE IF ERL =
160 THEN RESUME 70 ELSE RESUME 230
350 IF ERR THEN PRINT: PRINT "ERROR";ERR;"AT LINE";ERL: END

MINI-ADS

\&

CLASSIFIED INFORMATION

Semi-Display:-

1-3 insertions - $£ 5.00$ per single column centimetre
$4-11$ insertions - $£ 4.50$ per s.c.c.
12 insertions - $£ 4.00$ per s.c.c.

Classified:-

19 pence per word (minimum 25 words)
Box number $£ 1.00$ extra

ALL ADVERTISEMENTS IN THIS SECTION MUST BE PRE-PAID

Closing date: - 2nd Friday in month preceding publication Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request)
Cheques and postal orders should be crossed and made payable to 'Computina Today'
CLASSIFIED ADS, COMPUTING TODAY, 145 CHARING CROSS
ROAD, LONDON WC2H OEE
(Tel. 01-437.1002)

SUPERBOARD II OWNERS! Cassette programme now available to turn your Superboard into an accurate 6 digit clock, (12 hour) - displaying hours, minutes, running seconds and auto AM-PM feature, all functions easily set. Finetuning data included. Only, £5.00 post free. S. N. Croft, 24 Milestone Road, Hitchin. Herts.

FLOPPY DISK DRIVES: Two 8 inch, $250 \times$ Byte drives, new, ready to use, full documentation, exchange or p/exchange considered. Offers, will spilt. Phone Ashford (Middlesex) 56693.

UFO ATTACK. The cult video game now available for PETS. Cassette $£ 5$ inclusive. Scott Computer Services. Henden Manor Farm, Ide Hill Sevenoaks Kent.

XTAL BASIC renumber routine, append to existing BASIC, no buffer required $£ 4$. Super Star Trek with animated torpedoes, £5. J. H. Taylor, 4 East View Avenue, Cramlington Village. Northumberland.

FOR SALE, Nascom 1, complete, fully socketed, including all literature, $£ 145$ ono. Phone Chester 676054 evening time.

COMPUTER REPAIRS, Mk14, £2.50 Nascom-1, £5, plus parts and postage Also other computers. We have been in computer business 2 years, and we use modern computerised testing. Good turnaround. 'Phone, evenings Redditch (0527: 61240. Redditch Electronics, 21 Ferney Hill Avenue, Redditch, Worcs. $8974 R U$.

TRITON, cased, full board RAM, RS232 Interface, V5.1 monitor and L5.1 Basic, Software, etc. $£ 350$. Also expansion Motherboard, $£ 50$. Telephone Andover 66681.

uHEX EPROM PROGRAMMERS

426 2508/2708/2758/2516/2716
Dual and Single supply Eproms, £95
416 2704/2708/2716 Dual only, £65
480 2704/2708 Kit $£ 35$. Built $£ 40$
All programmers require only standard power supplies.
The 426 and 416 are cased and have push-button selection.
Program any length block into the Eprom.
Software included. Range covers Z 80 ,
8080, 6800 and 6500. State machine.
PIO, PIA INTERFACE MODULES Available for Z80/8080 and 6800/6500.
Prices include carriage. Please add VAT. SAE for further product information:

MICROHEX COMPUTERS

2 Studley Rise, Trowbridge, Wilts.
trik 14 - Replace calculator type display with full size FND 500 displays. PCB, filter and instructions $£ 2$. 25 way keyboard complete kit $£ 10$. Useful notes on MK 14 50p. Rayner, 'Kismet', High Street, Colnbrook, Bucks.

50 Hz SUPERBOARDS

 BRITISH MODEL from $£ 190$ plus VAT Fully built, tested and set up Authorised dealer beckupFree cursor control, backspace, etc. taps C.T.S. 1 Higher Calderbrook, Littleborough, Lancs. Tel. Littleborough 79332 anytime

MAKE-YOUR EXIDY SORCERER WORK FOR YOU
mans distribution box
-Completely decoupled, safe to use, fused

- Three onioff + 132 Level dimmer
-13 Amp sockets
- Full documentation supplied, complete with . 13 A plug
- Connecta to paralleel port on your Sorcerer - $£ 9$ + VAT pap included.

hi-tech Electronics

1 Richmond Gardens, Highfield, Southampton. SO2 1RY.

Tel. (0703) 555072

FOR SALE

Canola SX100 Programmable Calculator: 1000 steps, 60 mamorits complate with magnetic cards and all instruction books.
Phone Newtestle Upon Tyne (0.233) 1283 oveninge.

UNIVERSITY OF DURHAM MICROPROCESSOR CENTRE

Applications are invited for the post of MICROPROCESSOR ENGINEER tensble for three years from as soon as possible. The Microprocessor engineer will be responsible for the establishment of a Centre for microprocessor technology within the University which will contain its own well equipped laboratory. The Centre will provide support for departments in hardware and software aspects of microprocessors and liaison with both experienced and inexperienced users will be essential. Additional staff posts in Centre should be available following this senior appointment.
The initial salary will be in the range $£ 7,227$ - £8,992 p.a. plus superannuation (under review).

Applications (3 copies) naming three referees should be sent by 15 February, 1980 to the Registrar and Secretary, Science Laboratories South Road, DURHAM, DH1 3LE from whom further particulars may be obtained.

J. MORRISON (MICROS)

*BASIC FOR 6800 systems
Powerful arithmetic routines 9 digit. Exp. 499 Exp. $\stackrel{+}{99}$
LISTING 99.00
DATA 4×2708 EPROM $£ 40.00$

- STANDARD ASSEMRLER (6800) Approx 21 K Supports FC8. FCC, ORG, EQU, RMB. All Motorola mnemonics. LISTING/DATA $\mathbf{7 . 5 0}$
-6800 TRACER
Will trace through rom and ram.
Prints out CC, AB, INDX, SP, Address data. LISTING/DATA E3.50
-VARIOUS GAMES FAOM ONLY ET.OO.
Send S.A.E. for list.
All prices inclusive.

17. Summersell Bentons Rise,
London S.E. 27.

ISSIFIED

MAJOR PRICE BREAKTHROUGHI High quality water resistant watches at unbeatable prices including the first quality alarm chronograph for UNDER £201

CASIO F.so
Alam Chronograph
3 year battery, $1 / 10$ second stopwatoh to 12 hours Net, lap and 1 st and 2 nd place times. 24 hour alarm Hourly chimes. Backlight Black resin case and strep Stainless steel front and back. Glass ($£ 24.95$)

$$
£ 19.95
$$

COMPUTER CASSETTE PROGRAMS DUPLICATED from single or double-sided cassette masters. From 33p inclusive. Minimum 10. Simon Stable Promotions, Inglenook, West End, Launton, Oxon. 086922831.

NASCOM II with 16K RAM board, graphics, Basic, keyboard, professionally assembled boards, fully tested, available due to cancellation, $£ 400$ plus VAT. Westech Electronics, 121 Barton Street, Gloucester. Tel. 0452-76506-76361.

TRITON COMPUTER, 7K memory on board - 1 K monitor plus 2 K Tiny Basic10 cassettes containing games plus leads and case. Securicor delivery, $£ 300$. Contact:- Mr. Brian Ewan, 16 Fairacres, Harwood, Bolton. BL2 3NT. Telephone Bolton (0204) 389498.

POWERTRAN COMP-80 COMPUTER, well built, tested and running, with Basic, graphics and expansion plug, $£ 280 . \mathrm{Mr}$. R. Rolley, 2-24 Laurence Kershaw Hall, Jarrom Street, Leicester.
Ja

ADVERTISERS INDEX

ACORN COMPUTERS 24
BUSINESS \& LEISURE 46
CALSCOPE 70
CHROMASONICS 48
COMP COMP COMP 7475
G.P. INDUSTRIAL 46
HAPPY MEMORIES 40
A. J. HARDING. 46
HENRY'S 56
H. L. AUDIO 9
LOWE ELECTRONICS 50
MIDWICH COMPUTER CO 36
NEWBEAR 76
NIC MODELS 36
OPTELCO 70
PETSOFT 14
POWERTRAN 2
RELIANT EXPRESS DELIVERIES 70
SCIENCE OF CAMBRIDGE 45
SOFTWARE PUBLISHING 40
STAR DEVICES 23
STRATHAND 40
TANGERINE 61
TEMPUS 73
TIMEDATA 36
VERO 15
WILLIAM STUART SYSTEMS 70

This short intensive course is intended to instruct from minimal knowledge to an operational capability of computer programming in BASIC high level language. The course is. fully residential from Friday evening to Sunday afternoon.
Option of non-residential weekend, week day evening and weekday courses avail able if required.

For further details of dates available, fees, etc. Phone (0401) 43139, or wrlte to: Dept CT
CLEVELAND BUSINESS SERVICES Cleveland House, ROUTH Beverley, North Humberside

INTENSIVE WEEKEND COURSES IN

BASIC

including hands-on mini computer operation.

Fully converted to UK T.V Standard Comes complete with easy to follow manuals UK Power Supply - Cassetre Leads Sample tapes Special box to enable you to plug inio you an Recommended tor lirst lime buyers Just plug in and go Full Range of Software Available

- NEW REDUCED PRICES

8K $£ 449$
16K £549
32K. £649
RRP 5795
for $32 K$ The PEDIGREE PETS
Very populat for home \& business use 8 K Microsott Basic ROM. BK Pet $32 \times$ \& $16 K$ with new improved keyboard
All with green screen

Interface PET IEEE - Centronics Parallel
Not decoded
$\mathbf{£ 4 9 . 0 0}$
Decoded
E77.00
Interface to Centronics parallel for
TRS80
575.00

Verocases for Nascom 1 \& 2 etc. $\quad E 2.50$

Keyboard Cases	$\mathbf{£ 9 . 9 0}$
Electric Pencil for TRS80	$\mathbf{£ 2 9 . 0 0}$

giving a quieter, faster, more reliable printer that can cope with plotting and printing (128 ASCII characters) with up to five copies, friction or tractor fed. The ribbon and thimble can be changed in seconds.
proportional spacing tabbing, and much, much more.

WordPro II The heart of the system - consists of a ROM and diskette. The ROM is inserted into a space socket inside the Pet. One

Super Quality - Low cost printer Tractor Feed with full 96 ASCII character set Accepis RS232C at band rates between 100 and 9600 and Parallel Bit data
Attaches either directly or through interiaces to Pet, Apple, TRS80, Sorcerer. Nascom. Compukit etc

- Ideal for home, personal and business computer systems - 12 diagonal video monitor - Composite video inpu - Composite video ingut Comparible with many computer systems - Solid-state circuitry for a stable \& sharp picture e Video bandwidth - $12 \mathrm{MHz}+308$ e Input im pedance -75 Ohms e Resolution - 650 lines Minimum In Central 80% of CRT: 550 Lines Minimum beyond central 80%.

NASCOM-2 MICRO COMPUTER

Microprocessors Z80A. 8 bit CPU. This will run at 4 MHz but is selectable between $1 / 2 / 4 \mathrm{MHz}$. This CPU has now been generally accepted as the most powerful, 8 bit processor on the marke

INTERFACE

Keyboard New expanded 57 key Licon, solid state keyboard especially built for Nascom Uses standard Nascom, monitor controlled, decoding
T.V. The lv peak to peak video signal can drive a monitor directly and is also fed to the on-board modulator to drive
the domestic T.V UART (Int.6402) which provides serial handling for the on-board cassette interface or the RS232/20mA teletype interface
The cassette interface is Kansas City standard at either 300 or 1200 baud. This is a link option on the NASCOM-2 The RS232 and 20 mA loop connector will interface directly into any standard teletype.
The input and output sides of the UART are independently switchable between any of the options
e it is possible to house input on the cassette and output on the printer
P1O There is also a totally uncommitted Parallel $1 / 0$ (MK3881) giving 16, programmable, 1/O lines. These are addressable as 2×8 bit ports with complete handshake controls
Documentation Full construction article is provided for those who buy a kit and an extensive software manual is pro those who buy a kit and an extensic
Basic The Nascom 2 contains a full 8 K Microsoft Basic in one ROM chip with additional features like DEEK, DOKE, SET, RESET for simple programming.

OMPUKIT UK10I

EUROPE'S FASTEST SELLING ONE BOARD COMPUTER

Simple Soldering due to clear and concise instructions compiled by
$\star 6502$ based system - best value for money on the market. \star Powerful 8 K Basic - Fastest around \star Full Qwerty Keyboard $\star 4 \mathrm{~K}$ RAM Expandable to 8 K on board. \star Power supply and RF Modulator on board. \star No Extras needed - Plug-in and go. \star Kansas City Tape Interface on board. \star Free Sampler Tape including powerful Dissampler and Monitor with each Kit. \star If you want to learn about Micros, but did't know which machine to buy then this is the machine for you.

> Build, Understand and Program
> your own Computer for
> only a small outlay

KIT ONLY £199 + VAT
NO EXTRAS NEEDED

AVAILABLE READ
ASSEMBLED \& TESTED
READY TO GO FOR $\mathbf{2} 49$

Specially designed case for Compukit in orange/black With room for accessories $\mathbf{5 9 . 5 0}$ + VAT
The Compukit UK101 comes in kit form with all the parts necessary to be up and working, supplied. No extras are needed. Ater plugging in just press the reset keys and the whole world of computing is at your fingertips. Should you wish to work in the machine code of the 6502 then just press the M key and the machine will be ready to execute your commands and programs. By pressing the C key the world of Basic is open to you.
This machine is ideal to the computing student or Maths student, ideal to teach your children arithmetic, and is also great fun to use.
Because of the enormous volume of users of this kit we are able to offer a new reduced price of $\mathbf{5 1 9 9}+$ VAT

THE NEW TRS80 SURPRISE MODEL II

Fast and expandablel
Model II operates at twice TRS -80's high speed
In addition to either 32 or 64 thousand characters (bytes) of internal Random Access Memory. one built-in $8^{\prime \prime}$ floppy disk stores an additional one half miltion bytes, including the Disk Operating System. And you can easily expand up to a four-disk system for up to two-million bytes of storage Model Il features upper and lower case letters. Its built-in $12^{\prime \prime}$ high-resolution video monitor displays 24 lines of 80 normal characters. The profesional 76 -key keyboard (with "calculator" keypadi includes advanced functions such as Control, Escape, Caps, Hold, Repeat. The keyboard is detachable and moveable for convenient data entry.
You get the enhanced Level III version of TRS-80's already-famous Level II BASIC language and "TRSDOS" operating system, automatically loaded in memory when you "power up" (About 24 K of RAM is used by this software.) Each time you power up, Model Il thoroughly tests itself to insure proper operation, Your chosen program can appear immediately, without any intermediate steps or questions to answer.

Versatility ... plug-in expandability
Built-in input/output capabilities include two RS: 232 C channels, and one Centronics parallel port. Future expansion is provided for through four plug-in slots for optional PC boards.
32K 1-Disk Model II 64K 1-Disk Model II £1999.00 $£ 2200.00$
3 DISK EXPANSION
500K per Drive gives total of
1.5M Byte for only $\mathbf{£ 1 3 9 9}$

Why do people buy more from COMPSHOP than anywhere else?

* LARGER STOCKS - we hardly ever run out
* EXCELLENT REPAIR SERVICE - Through Compucare we repair and main

AST makes of personal computers. LAST YEAR WE SUPPLIED TO THE PUBLIC - LARGE \& SMALL

16,000 Television Games \& 7,000 Computer Systems

Compucare is a company that has been set up to provide servicing Compucare is a company that has been set up to provide servicing
and maintenance for the popular makes of micro-computers i.e. Sorcerer Pet, Apple, TRS80. Nascom, Compukit. Our charges are $£ 7$ per hour plus parts.
Because of the extensive range of spare parts stocked you can usually expect your micro to be repaired within 10 days for an average charge of $£ 14$ labour.
Emergency 24 hour repairs can be handled for a $£ 10$ surcharge where possible.

- Compukits and Nascoms unsuccessfully constructed will be charged a standard $£ 25$

THE ATARI VIDEO

 £138 COMPUTER SYSTEMAtarl's Vldoo Computer Syatem now offers more than 1300
different game variations and options in twenty greet Game different garme variations and options in twenty great Game Program ${ }^{\text {TM }}$ cartridgea!
Have fun while you sharpen your mental and physical coordination You can play rousing, challenging, sophisticated video games, the games that made Atari famous.
You'll have thrill after thrill, whether you're in the thick of a dogfight, screeching around a racetrack, or dodging asteroids in an alien galaxy. With crisp bright colour fon colour TV) and incredible, true-to life sound effects. With special circuits to protect your TV.
Cartridges now available All at $\mathbf{£ 1 3 . 9 0}$ each + VAT
Basic Maths, Airsea Battle, Black Jack, Breakout, Surround, Spacewar, Video Olympics, Outlaw, Basketball, Hunt \& Score. Space War, Sky Diver, Air Sea Battle Codebreaker*. Miniature Golf
Extra Paddle Controllers

- Keytcard Controllers
$-\mathbf{~ 1 8 . 9 0}+$ VAT

Please add VAT to all prices - Delivery at cost, will be advised at time of purchase. Please make cheques and postal orders payable to COMPSHOP LTD., or phone your order quoting BARCLAYCARD, ACCESS, DINERS CLUB or AMERICAN EXPRESS number.
CREDIT FACILITIES ARRANGED - send S.A.E. for application form.
14 Station Road, New Barnet, Hertfordshire, EN5 1QW Telex: 298755 TELCOM G Telephone: 01-441 2922 (Sales) 01-449 6596

Components

MICROCOMIPUTING I.C.'

CI

$={ }^{-2}$

77.68 Prices Slashed!

MC6802
$\begin{array}{lll}\text { Bearbay } & 1 & 77-68 \text { CPU KIT } \\ \text { Bearbag } & 5 & 77-684 \mathrm{~K} \mathrm{RAM} \mathrm{KI} \\ \text { Bearbay } & 6 & 77-68 \mathrm{MON} \text { KIT }\end{array}$
£35.00
MC6821
MC6850
MC6810A
77-68 MON 1 KIT
£55.00
MC6840
Bearbay 12 77-68 V.D.U. KIT
£37.50
MC8602P
£42.50
Bearbag 13 77-68 MON 2 KIT
£47.50
MC3459
Z80 CPI 2.5 MHz
Bearbag 16 77-68 EPROM BOARD KIT
£21.50
Bearbag 17 77-68 PIO BOARI) KIT
Bearbag 23 77-68 32K DYNARAM KIT £40.00
Z80 CTC: 2.5 MHz Z80A (PU 4 MHz Z80A P10 4MHz
Bearbag 18 CASSETTE NNTERFACE
SC/MP 11
(INS 8060 N INS 8154 N 8080A 6502 6522
6532 6545
$£ 142.50$
$£ \quad 7.15$
6545
च
\star SUPERBOARI II
$\star 610$ EXTENSION BOARI)
\star FLOPPY DISC DRIVE
(includes DOS, 12K Basic, Case \& PSU)
6551 £ 10.79

HM INIIIIIIII

S100 BUS

8 Slot Motherboard
12 Slot Motherboard
20 Slot Motherboard
Z80 CPU Board

- Z80 CPU Board Ass. 4 MHz

Z80 CPU Board Ass. 2 MHz
V.D.U. Board
V.D.U. Board Assembled

Floppy Disc Controller Board
Floppy Disc Controller Board Ass, 2708/2716 Eprom Board
2708/2716 Eprom Board Assembled 8 K Static Ram Board
8K Static Ram Board Ass. 250 NS
8K Static Ram Board Ass. 450 NS Prototype Board

CALLERS AND MAAIL. ORDER: 40 Bartholomew Strect, Newbury, Berks. Tel: 063530505

[^0]: *Use a 600 mA at. 9 V DC nominal unregulated mains adaptor. Available from Sinclair if desired (see coupon)

[^1]: 5 INPUT"[CLR] PASSWORD PLEASE [R]"; A\$
 10 IF A\$ < > "[PASSWORD]" THEN NEW
 15 DIM $\mathrm{B} \$(20), \mathrm{B}(20), \mathrm{T}(20), \mathrm{M} \%(12), \mathrm{S} \%(12)$

